
CONTENTS Chapter 0

The Quasar Computation System: Quick Reference Manual

October 30, 2023

Contents

Contents 1

1 Introduction 7

1.1 Computation Engines . 7

1.2 How to use? . 8

1.3 Quasar Programming Language . 9

1.4 Integration with foreign programming languages . 11

2 Getting started 12

2.1 Quasar high-level programming concepts . 12

2.2 A brief introduction of the type system . 23

2.2.1 Floating point representation . 25

2.2.2 Mixed precision floating point computations . 26

2.2.3 Integer types . 27

2.2.4 Fixed sized datatypes . 28

2.2.5 Higher dimensional matrices . 28

2.2.6 User-defined types, type definitions and pointers . 29

2.3 Automatic parallelization . 31

2.4 Writing parallel code using kernel functions . 33

2.4.1 Basic usage: kernel functions . 33

2.4.2 Device functions . 36

2.4.3 Memory usage inside kernel or device functions . 38

2.4.4 Advanced usage: shared memory and synchronization . 40

3 Type system 45

3.1 Type definitions . 45

3.2 Variable construction . 46

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 1

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

CONTENTS Chapter 0

3.3 Size constraints . 47

3.4 Dimension constraints . 49

3.5 Cell array types . 49

3.6 Type constructors and the typename function . 49

3.7 Type classes . 50

3.8 Class / user defined type (UDT) definitions . 50

3.9 Function types . 51

3.10 Enumerations . 52

3.11 Passed by reference / Passed by value . 52

3.12 Constants . 52

4 Programming concepts 55

4.1 Polymorphic variables . 55

4.2 Closures . 56

4.3 Device functions, kernel functions, host functions . 58

4.4 Nested parallelism . 59

4.5 Function overloading . 60

4.5.1 Device function overloading . 61

4.5.2 Optional function parameters . 62

4.6 Functions versus lambda expressions . 62

4.6.1 Explicitly typed lambda expressions . 63

4.7 Kernel function output arguments . 64

4.8 Variadic functions . 65

4.8.1 Variadic device functions . 66

4.8.2 Variadic function types . 66

4.8.3 The spread operator . 67

4.8.4 Variadic output parameters . 68

4.9 Reductions . 68

4.9.1 Symbolic variables and reductions . 70

4.9.2 Reduction resolution . 70

4.9.3 Ensuring safe reductions . 71

4.9.4 Reduction where clauses . 73

4.9.5 Variadic reductions . 74

4.10 Partial evaluation . 74

4.11 Code attributes . 75

4.12 Macros . 77

4.13 Exception handling . 78

4.14 Documentation conventions . 78

5 The logic system 80

5.1 Kernel function assertions . 81

5.2 Built-in compiler functions . 81

5.3 Assertion types recognized by the compiler . 82

5.3.1 Equalities . 82

5.3.2 Inequalities . 82

5.3.3 Type assertions . 83

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 2

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

CONTENTS Chapter 0

5.4 User-defined properties . 83

5.5 Unassert . 84

5.6 The role of assertions . 84

6 Generic programming 85

6.1 Parametrized functions . 86

6.2 Parametrized reductions . 88

6.3 Parametrized types . 88

6.4 Generic memory allocation functions and casting . 89

6.5 Explicit specialization through meta-functions . 90

6.6 Implicit specialization . 91

6.7 Generic size-parametrized arrays . 92

6.8 Generic dimension-parametrized arrays . 92

6.9 Example of generic programming: linear filtering . 94

7 Object-oriented programming 98

7.1 Mutable/non-mutable classes . 98

7.2 Constructors . 99

7.3 Destructors . 99

7.3.1 Methods . 99

7.3.2 Properties . 100

7.3.3 Operators . 100

7.4 Dynamic classes . 100

7.5 Parametric types . 101

7.6 Inheritance . 102

7.7 Virtual functions, interfaces, abstract classes . 103

8 Special programming patterns 105

8.1 Matrix/vector expressions . 105

8.2 Loop parallelization/serialization . 106

8.2.1 While-loop serialization . 108

8.2.2 Example: gamma correction . 108

8.3 Dynamic kernel memory . 109

8.3.1 Examples . 110

8.3.2 Memory models . 110

8.3.3 Features . 112

8.3.4 Performance considerations . 112

8.4 Map and Reduce pattern . 113

8.5 Cumulative maps (prefix sum) . 114

8.6 Meta functions . 115

9 GPU hardware features 118

9.1 Constant memory and texture memory . 118

9.2 Shared memory designators . 121

9.2.1 How to use . 122

9.2.2 Virtual blocks and overriding the dependency analysis . 124

9.2.3 Examples . 124

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 3

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

CONTENTS Chapter 0

9.2.3.1 Histogram . 124

9.2.3.2 Separable linear filtering . 126

9.2.3.3 Parallel reduction (sum of NxN matrices) . 126

9.3 Speeding up spatial data access using Hardware Texturing Units . 127

9.4 16-bit (half-precision) floating point textures . 129

9.5 Multi-component Hardware Textures . 130

9.6 Texture/surface writes . 130

9.7 Maximizing occupancy through shared memory assertions . 131

9.8 Cooperative groups and warp shuffling functions . 132

9.8.1 Fine synchronization granularity . 134

9.8.2 Optimizing block count for grid synchronization . 136

9.8.3 Memory fences . 136

9.9 Kernel launch bounds . 136

9.10 Memory management . 137

9.11 Querying GPU hardware features . 138

10 Parallel programming examples 139

10.1 Gamma correction . 139

10.2 Fractals . 140

10.3 Image rotation, translation and scaling [basic] . 140

10.4 2D Haar inplace wavelet transform using lifting . 141

10.5 Convolution . 142

10.6 Parallel reduction sum . 144

10.7 A more accurate parallel sum . 146

10.8 Parallel sort . 147

10.9 Matrix multiplication . 148

11 Multi-GPU programming 152

11.1 A quick glance . 152

11.2 Setting up the device configuration . 153

11.3 Three levels of concurrency . 154

11.4 Manual vs. automatic multi-GPU scheduling . 155

11.5 Host Synchronization . 158

11.6 Key principles for efficient multi-GPU processing . 159

11.7 Supported Libraries . 160

11.8 Profiling techniques . 160

11.9 Automatic GPU scheduling . 163

11.10Developing multi-GPU applications . 164

12 SIMD processing on CPU and GPU 165

12.1 Storage versus computation types . 166

12.2 x86/x64 SIMD accelerated operations . 167

12.2.1 Example: AVX image filtering on CPU . 168

12.3 CUDA SIMD accelerated operations . 168

12.3.1 Example: 8-bit image filtering . 170

12.3.2 Example: 16-bit half float image filtering . 170

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 4

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

CONTENTS Chapter 0

12.4 ARM Neon accelerated operations . 170

12.5 Automatic alignment . 170

12.6 Automatic SIMD code generation . 171

13 Best practices 172

13.1 Use “main” functions . 172

13.2 Shared memory usage . 173

13.3 Loop parallelization . 173

13.4 Output arguments . 174

13.5 Writing numerically stable programs . 175

13.6 Writing deterministic kernels . 176

14 Built-in function quick reference 178

15 Functional image processing in Quasar 181

15.1 Example: tranlation and filtering . 183

16 The Quasar runtime system 185

16.1 Program interpretation and execution . 186

16.2 Abstraction layer for computation devices . 186

16.3 Object management . 187

16.4 Memory management . 188

16.5 Load balancing and runtime scheduling . 189

16.6 Optimizing memory transfers with const and nocopy . 189

16.7 Controlling the runtime system programmatically . 190

17 The Quasar compiler/optimizer 191

17.1 Function Transforms . 191

17.1.1 Automatic For-Loop Parallelizer (ALP) . 193

17.1.2 Automatic Kernel Generator . 194

17.1.3 Automatic Function Instantiation . 195

17.1.4 High Level Inference . 195

17.1.5 Function inlining . 196

17.1.6 Kernel fusion . 197

17.2 Kernel transforms . 198

17.2.1 Parallel Reduction Transform . 199

17.2.2 Local Windowing Transform . 201

17.2.3 Kernel Tiling Transform . 202

17.2.4 Kernel Boundary Checks . 204

17.2.5 Target-specific programming and manually invoking the runtime scheduler 205

17.2.6 Compile-time specialization through the $target() meta function 207

17.3 Common compilation settings . 207

17.4 CUDA target architecture . 207

18 Development tools 210

18.1 Redshift - integrated development environment . 210

18.2 Spectroscope - command line debugger . 211

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 5

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

CONTENTS Chapter 0

18.3 Redshift Profiler . 212

18.3.1 Security settings . 214

18.3.2 Peer to peer transfers . 214

18.3.3 GPU event view . 216

18.3.4 Timeline view . 217

18.3.5 Kernel line information . 218

18.3.6 Kernel metric reports . 219

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 6

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 1

Chapter

1

Introduction

The Quasar Computation System is optimized to deal with “astronomical” numbers of data values or operations,

massively performed in parallel and/or distributed along several processors, hence its name. In the first place, the

system is intended to be used for processing of 2D or 3D images, and excels in iterative algorithms that allow for a

lot of parallelism. The system consists of three major components:

• Quasar compiler: compiles input code (.q files written in the Quasar scripting language) to an intermediate

format, which can either be directly interpreted or translated to Common Intermediate Language (CIL) code

(managed executable files). These managed executable files can then be run under Windows (.Net or MONO),

Linux (MONO) or Mac (MONO).

• Quasar interpreter: mostly used for debugging code.

• Quasar computation engine: a computation engine performs general (high-level) computations, such as mul-

tiplication of real-valued matrices, taking the imaginary part of a complex number, performing FFTs and

various built-in functions. Computation engines are substitutable, which means that one engine can take over

the work of another engine.1

1.1 Computation Engines

Different computation engines exists which take advantage of certain technology present on the system.

1. Generic CPU computation engine: makes use of an optimizing C++ compiler (such as GCC, Intel Compiler,

...) in the background and automatically uses OpenMP for multi-threading. This gives a speed up of typically

2x-8x compared to sequential execution.

2. CUDA computation engine: uses the CPU for small number of computations (e.g. operations with small

matrices), and dynamically switches to GPU computation for larger amount of data, and depending on

whether the data currently already resides in GPU/CPU memory.

1For GPU computation engines vs. Generic CPU computation engine (see section 1.1), this is done automatically and at any time.
For other computation engines, this is only possible by specifying command-line flags, in future versions this may be possible at runtime
as well.

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 7

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.2. HOW TO USE? Chapter 1

3. Hyperion computation engine: provides multi-GPU support (see section §11) and allows using OpenCL devices.

4. Helios computation engine: a light computation engine, developed in C++, intended for embedded platforms.

The specific details and implementation of the computation engine are completely transparent to the user. More

concretely, the user can specify by command line which computation engine to use. For example -cpu specifies to

use the generic CPU engine, -gpu will give the “best” GPU engine for the given system (at least if CUDA/OpenCL

is installed). The computation engines perform automatic memory management, i.e. the user is relieved from

allocating/freeing memory, and copying memory from/to the GPU. The CPU computation engine (currently) uses

a garbage collector, while the CUDA computation engine has a custom fast memory allocator.

The Quasar compiler automatically invokes the NVidia CUDA compiler (CUDA computation engine) or the con-

figured C/C++ compiler (CPU computation engine) for compiling critical parts of the code (so-called device and

kernel functions, see further).

1.2 How to use?

One single executable program performs all the work (both compiling and running the code). The usage is as

follows:

./Quasar.exe [-debug] [-cpu|-gpu] [-profile] [-double] [-nogl] [-make_exe] program.q

where the parameters have the following meaning:

• -debug: use the interpreter for running the code. In case of failure, exact information on the lines which

triggered the error will be given (useful for debugging).

• -cpu: uses the generic CPU computation engine for running the code (default=-gpu)

• -gpu: uses a GPU computation engine (default choice)

• -profile: runs the code in interpreted mode, and collects profiling information. The profiling information is

then printed to the console at the end of the program.

• -double: instructs the computation engine to use the double precision floating point by default (see sec-

tion 2.2.1).

• -make_exe: builds a managed executable (.exe). The executable can be run using .Net/MONO.

• -make_lib: builds a managed library (.qlib), that can be used in other Quasar programs.

• -nogl: disables OpenGL support (used for visualization, e.g. the function imshow).

• program.q: a source code file written in the Quasar programming language, containing the program to run.

When the -debug switch is not specified, the compiler produces an executable binary (.exe) which allows the

program to be run directly without compilation. The compiler is relatively fast, most (simple) algorithms take a

couple of milliseconds to compile.

Note that the GPU computation engine is often 10x to 100x faster then the CPU computation engine. Nevertheless,

it is useful to occasionally run the program on the CPU as well, to check the numerical accuracy/precision of the

results.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 8

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.3. QUASAR PROGRAMMING LANGUAGE Chapter 1

Architecture: 32-bit/64-bit CPU or GPU

Quasar has been designed to operate correctly in the following conditions:

• 32-bit CPU (x86) - the CPU uses a 32-bit address space.

• 64-bit CPU (x64) - the CPU uses a 64-bit address space (useful for addressing more than 2GB of RAM).

• 32-bit GPU - the GPU uses a 32-bit address space.

• 64-bit GPU - the GPU uses a 64-bit address space (when the GPU has more than 2GB RAM, although devices

with less than 1GB RAM support it).

By default, the choice of 32-bit/64-bit CPU depends on the OS. If a 64-bit OS is installed, the 64-bit CPU version

of Quasar will be used. The mode in which the GPU is run, depends on the installed version of the GPU runtime

(e.g., 64-bit or 32-bit CUDA Runtime). The normal practice is to run the GPU in the same mode as the CPU.

Under some circumstances, some GPU devices do not support 64-bit yet. For CUDA, this can be solved by using a

special 32-bit version of the CUDA interoperability DLL (CUDA.Net.dll), instead of the default cross-architecture

DLL.

Important note: since CUDA 7.0 (released in 2015), the 32-bit mode is not supported anymore. Quasar still

supports 32-bit modes for backward compatibility (e.g., in combination with CUDA 6.5). However, it is highly

recommended to switch to 64-bit versions of Quasar whenever possible.

Supported libraries

A number of libraries have builtin support. These include: OpenGL, FFTW, cuFFT, cuBLAS, cuSolver and

cuDNN. It suffices to use the Quasar functions designed to use these libraries in a user-friendly way. For more

information, see the CUDA guide.

Distributing Quasar programs

Quasar programs need to be distributed together with the Quasar runtime library. For this purpose, portable

Quasar runtime installers are available for Windows and Linux. The portable Quasar runtime installer can e.g. be

integrated in your product installer.

1.3 Quasar Programming Language

Motivation for a new programming language for heterogeneous computing From the principle, the right

tool for the right job, Quasar aims at simplicity (a low barrier of entry) while aiming at a high performance that is

similar to handwritten C++/CUDA/OpenCL code.

Additionally, the Quasar language unifies CPU and GPU programming: one single code path is sufficient to generate

optimized versions for both CPU and GPU. This considerably reduces programming effort. In fact, the Quasar

compiler can recognize and optimize sophisticated programming patterns (such as parallel reductions, prefix sums,

stencil operations etc.) To be able to do so, higher-level information is extracted from the Quasar program. In other

programming languages this information is often lost (e.g., because there are no built-in dynamically sized multi-

dimensional arrays, the presence of pointers and aliasing conditions hamper compiler analysis, array/vector sizes

cannot be statically determined etc.). Quasar then uses target-specific source-to-source optimizations to generate

efficient C++/CUDA or OpenCL code. For the final translation to binary, commercial or open-source compilers

are used in the background. This also allows benefitting from the low-level optimizations in these compilers.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 9

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.3. QUASAR PROGRAMMING LANGUAGE Chapter 1

Furthermore, Quasar offers the low-level flexibility and optimization possibilities of C/C++ together with the high-

level rapid testing/development of Octave/Matlab. Additionally, Quasar is user/programmer-friendly and is easy

to learn. Of course, there are always certain compromises to be made (e.g., flexibility of programming versus

computational cost), but this is where the compiler research and the various tools kick in.

Syntax features The emphasis of the Quasar programming language is on simplicity and practical usefulness.

The syntax is similar to MATLAB/Octave (this is mainly to keep the transition from Matlab to Quasar easy),

although there are a number of differences which encourage efficient programming:

1. Objects (such as matrices, cell matrices etc) are passed by reference rather than by value. This means that a

simple assignment a=b has negligible computation cost, since it only involves copying pointers. However, one

has to be careful with function calls: when passing a matrix as an input argument, the function is allowed to

modify the input parameter.2 This is mainly for efficiency reasons. On the other hand, scalar numbers (real

or complex) are passed by value at any time.

2. Zero-based indexing. All indices start with 0, similar to C/C++, Java, C#, ...

3. Some improved syntax (similar to GNU OCTAVE): lambda expressions, indexing of the results of a function

call (like imread(file)[0..100,0..100]), ...

Advantages In general, Quasar has the following advantages:

1. Uniform programming model for CPU and GPU. Unlike some other programming models, in Quasar it is not

necessary to implement separate functions for different target devices (for example, a CPU implementation

and a GPU implementation). In fact, the same code is targetted toward heterogeneous compute devices. For

this purpose, compiler transformations specialize the code for the target architecture. When desired, it is

possible to write target-specific code, but in practice this is rarely needed.

2. Compact and easy to learn programming language. Quasar code is simple to develop using the Quasar Redshift

IDE. An easy learning curve, together with various integrated debugging and visualization tools allow a novice

to get started really quickly. Compiler errors and warnings have been optimized to be as informative and

helpful as possible.

3. Access to low-level parallelization primitives (through kernel and device functions). Kernel and device func-

tions are compiled natively using existing C++/CUDA compilers (e.g., CUDA NVCC, GCC, MSVC or any

other C++ compiler). Quasar code can therefore be seen as a thin layer on top of C++ or CUDA.

4. High-level programming. Loop parallelization and kernel generation convert the code to low-level kernels. The

high-level programming approach not only increases productivity, but it also stimulates writing concise and

readable code. This simultaneously reduces the chance for bugs.

5. Transparent use of CPU / GPU resources. Essentially, no knowledge on GPU programming is required.

However, knowledge on parallel programming is a must!

6. Automatic concurrent kernel execution. Automatic assignment of CUDA streams is generally a tedious task.

The runtime system automates this task, as a result, kernel launches and memory copies can overlap whenever

the compute device resources and data dependencies allow it.

2If the intention is to copy the values of objects, the function copy(.) can be used to perform a deep copy of objects.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 10

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.4. INTEGRATION WITH FOREIGN PROGRAMMING LANGUAGES Chapter 1

7. Lightweight runtime system with minimal runtime overhead. As long as the bulk of the computations is done

within kernel/device functions, the runtime overhead is negligible. The execution time is often similar to

handwritten C++ or CUDA code.

8. Dynamic runtime scheduling. The runtime system offloads computations to be best suitable (and available)

device.

9. Automatic memory management and memory transfers: there is no need to worry about deallocation, dangling

pointers. Additionally, the runtime system makes sure that the memory is transferred to the right device at

the right time.

10. Hardware agnostic programming. In general, the Quasar programming model is hardware-agnostic, so that

the code does not depend much on the features of the (GPU) hardware. When desired, low level primitives

(e.g., shared memory, thread synchronization, textures, ...) can be accessed.

11. Easy access to low-level CUDA features. such as textures, surfaces, cooperative threading, warp shuffling,

shared memory and thread synchronization.

12. Builtin OpenGL interoperability and visualization features. OpenGL interoperability allows access to data

allocated in CUDA, which is useful for efficient visualization. There is the possibility of generating both

texture and vertex data from Quasar, which allows creating e.g., advanced 3D plots.

13. Future-proofness: older Quasar programs automatically use GPU feature of newer GPU architectures. You

only need to update to the latest Quasar version

1.4 Integration with foreign programming languages

Many existing code bases exist, therefore Quasar can be seamlessly integrated with several programming languages.

In this section, we provide a quick overview of integration techniques. For more details, see the external interface

reference.

1. .Net languages (C#, F#, IronPython, ...): the Quasar .Net host API can be used to access Quasar features

(including running Quasar libraries or binaries generated using Quasar).

2. Java: a Java bridge has been developed by the Flemish Institute for Biotechnology (VIB) and will soon be

available open source.

3. C++: the Quasar C++ host and DSL APIs offer an extensive set of runtime features to allow either Quasar

programs to be used as libraries in C++ projects, or C++ libraries to be called from Quasar. Furthermore,

the Helios system allows transpiling Quasar code to C++ which can be linked with existing C++ modules.

4. Python: the pyQuasar Python-Quasar bridge acts as both a library to Quasar and a class extension to Python,

allowing Quasar functions to be called from Python, and vice versa. pyQuasar also maps NumPy arrays onto

Quasar arrays.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 11

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 2

Chapter

2

Getting started

In this section, we will give you a little tutorial, to give you an idea of the Quasar programming language. First, a

number of high-level concepts are listed. These concepts are included mainly to ease programming in Quasar. The

most interesting parts are discussed in Section “writing parallel code” (section 2.4).

2.1 Quasar high-level programming concepts

1. Variables: Quasar variables are (by default) weakly-typed, although some mechanisms exist to enforce strong-

typing. Variable names and function names are case sensitive.

2. Data types: some of the built-in data types are listed here:

• scalar: specifies a floating-point number. The used precision depends on the settings of the computation

engine.

• cscalar: specifies a complex-valued scalar number

• vec: a dense vector (1D array) of arbitrary length (the size is limited by the system resources)

• mat: a dense matrix (2D array) of arbitrary size (the size is limited by the system resources)

• cube: a dense cube (3D array) of arbitrary size (the size is limited by the system resources)

• cvec: a complex valued dense vector

• cmat: a complex valued dense matrix

• ccube: a complex valued dense cube

• string: a string expression

• cell: a cell matrix object

• kernel_function: represents a reference to a kernel or device function (see further).

• function: a reference to a Quasar (user) function or lambda expression

• object: a user-defined object (see function object())

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 12

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS Chapter 2

Note that specific functions (see further) need to be used to create variables of a given type. There are also

some special built-in datatypes: vecx and cvecx, with x=1,...,32 specify a vector of length x.

3. Scalar numbers: scalar numbers can be entered in decimal notation (5.678) as well as in scientific notation

(-1.9e-4). Imaginary numbers are defined by adding the suffix j (or i), hence 1+1j or 1-1j represent complex

numbers. Non-decimal numbers are also supported: for example, binary numbers 1011011b (suffix b or B),

octal numbers 123456o (suffix o or O) and hexadecimal numbers 1Fh or 0ECD3Fh (suffix h or H).

4. Integer numbers: Quasar supports integer numbers (type int). The bit length of the int type depends on the

computation engine, but is typically 32-bit. Also integer types with specified bit length exist: int8, uint8,

int16, uint16, uint32.

5. % Comments are cool

However, note that multi-line comments are currently not (yet) supported.

6. Assignment expressions:

cool = 1

quasar = cool

The separation of lines using “;” is optional, and only mandatory when multiple statements are placed on the

same line. One can assign to multiple variables at once, similar to C/C++:

a = b = 1

also, the result of an assignment is a value (in this case, 1). Multiple variable assignment is also possible (i.e.

assigning multiple values to multiple variables at once). For example:

[a, b] = [1, 2]

will assign 1 to a and 2 to b. It is equivalent to:

a=1; b=2

The multiple variable assignment is mostly useful for 1) assigning multiple return values from functions, for

interchanging values:

[a, b]=[b, a]

will swap the values of a and b. In some cases, it may be useful to neglect a certain return value. This can be

done using the placeholder _:

[a, _] = [1,2]

[_, b] = [1,2]

7. Arrays (vectors, matrices, cubes etc.) The data type used may depend on the settings of the computation

engine (currently, only 32-bit floating point is allowed, for efficiency). The following program illustrates how

to create vectors and perform operations:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 13

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS Chapter 2

a = [0, 1, 2, 3] + 4

b = [3, 3, 3, 3]

print "a = ", a, "a .* b = ", a .* b, "sum(a.*b) = ", sum(a .* b)

print "a^2 = ", a.^2

String expressions are defined by double quotes (“”), the function “print” allows to print several comma

separated values to the console. The “sum” function computes the sum of all components of the vector. The

first line evaluates to

a = [4, 5, 6, 7]

i.e., 4 is added to every component of the vector. [4, 5, 6, 7] then represents a row vector. A matrix can

be defined as follows:

a = [[1,2],[2,1]]

Statements and expressions can be split across multiple code lines. The following is also valid:

a = [[1,2],

[2,1]]

However, for readability, it is adviced to put an underscore at the line break:

a = [[1,2], _

[2,1]]

Similarly, a 3D matrix can be defined by:

a = [[[1,2],[3,4]],[[5,6],[7,8]]]

An alternative way of defining matrices is using the function zeros(.) or ones(.), which will initialize the

values of the matrix to 0 and 1, respectively:

a = zeros(5)

b = zeros(6, 4)

c = zeros(8, 6, 4)

d = ones(5)

e = ones(6, 4)

f = ones(8, 6, 4)

Alternatively, a vector with the dimensions can be used:

dims = [4, 5, 6]

a = ones(dims)

The function size(.) returns the size of a vector/matrix/cube:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 14

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS Chapter 2

dims = size(a)

dim_y = size(a,0)

dim_x = size(a,1)

dim_z = size(a,2)

[dim_y,dim_x] = size(a,0..1)

[dim_y,dim_x,dim_z] = size(a)

Note that the dimensions are zero-based. By convention, y is the first dimension (corresponding to index 0),

x is the second dimension and z is the third dimension. Internally, matrices are stored in row-major order.1

An n× n identity matrix can be created by using the function eye(.):

Q = eye(n)

Another example:

a = [[1,2],[2,1]]

b = [[3],[4]]

a[0,0] = 2

print a * b, ",", eye(3)

print a[0,0]

print "size(a)=", size(a), "size(a,1)=", size(a,1)

The function numel(.) gives the number of elements of a vector/matrix/cube. Practically: numel(X) =

prod(size(X)).

8. Operators: see table 2.1.

Notes:

• There are no bit-wise integer operators. Instead, use the functions and (bitwise conjunction), or (bitwise

disjunction), xor (exclusive or), not (bitwise negation), shl (bit-wise left shift), shr (bitwise right shift).

• Within kernel or device functions, the operators +=, -= have a special meaning: they specify atomic

operations (i.e. these operations are free of data races). There are currently 13 atomic operators (see

table below).

9. Sequences: a sequence defines a row vector:

a=0..9

b=0..2..6

The middle argument defines the step size. Generally, the sequence includes the specified lower and upper

bounds.2 Hence, the above statements are equivalent to:

a=[0,1,2,3,4,5,6,7,8,9]

b=[0,2,4,6]

The sequences can subsequently be used for matrix indexing:

1This is in contrast to MATLAB, which uses column-major order (i.e. FORTRAN order).
2Except when the step size is too large, such as 0..2..3 = [0, 2] or 0..100..10 = [0].

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 15

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS Chapter 2

Table 2.1: Some operators

= assignment ! inversion (of Boolean values)

+ add && Boolean AND

- subtract / negation || Boolean OR

* matrix multiplication (or multiplication of scalar values) ? : Conditional expression (similar to C/C++)

/ division of scalar values += a += b is a shorthand for a = a + b

.* point-wise multiplication (vec, mat, cube data types) -= a -= b is a shorthand for a = a - b

./ point-wise division (vec, mat, cube data types) *= a *= b is a shorthand for a = a * b

ˆ exponentiation (scalar values currently) /= a /= b is a shorthand for a = a / b

.ˆ point-wise exponentiation ˆ= a ˆ= b is a shorthand for a = a ˆ b

< smaller than .*= a .*= b is a shorthand for a = a .* b

<= smaller than or equal ./= a ./= b is a shorthand for a = a ./ b

> greater than .ˆ= a .ˆ= b is a shorthand for a = a .ˆ b

>= greater than or equal ˆˆ= Atomic maximum

== equality = Atomic minimum

!= inequality ˜= Atomic bitwise exclusive or (XOR)

.. Defines a sequence (see further) |= Atomic bitwise OR

&= Atomic bitwise AND

A=randn(64,64)

A_sub = A[a,b]

Example:

a = 1..2..10

b = sum(a)

c = linspace(1, 2, 5)

print "a = ", a, "c = ", c

print sum = ", [b, sum(c)]

The linspace function creates an uniformly spaced row vector of 5 values between 1 and 2, hence c =

[1,1.25,1.5,1.75,2]. Implicit sequences (:) can be used to quickly index matrices:

print A[:,0], A[0,:]

This statement prints the first column of A, followed by the first row of A. Note that for the Matlab keyword

“end”, there is no Quasar equivalent. However, it is still possible to use A[0..size(A,0)-1,0].

10. Control structures: Quasar supports several control structures:

for a=0..2..4

break

continue

endfor

if a==2

endif

if a==2
...

elseif a==3
...

else
...

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 16

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS Chapter 2

endif

while expr

break

continue

endwhile

repeat

break

continue

until expr

Note that “if” is ended with “endif”. Also “if”, “endif” statements must be spread along several lines of

code. This is to improve readability of the code. The following is NOT allowed:

if a==2; do_something(); endif % Not allowed!

An example of a for-loop:

for i=1..2..100

j=i+1

print i, " ", j

if i==1

print "i is one"

elseif i==3

print "i is three"

endif

endfor

Non-uniform ranges can be specified as follows:

for powerOfTwo=[1,2,4,8,16,32,64,128]

print powerOfTwo

endfor

or more conveniently as:

for powerOfTwo=2.^(1..7)

print powerOfTwo

endfor

11. Switches are also possible, the syntax is a little different, for example:

match a with

| 1 ->

print "a=1"

| 2 ->

print "a=2"

| (3, 4) ->

print "a=3 or a=4"

| "String" ->

print "a=String"

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 17

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS Chapter 2

| _ -> print

"a is something else"

endmatch

Note that different data types (i.e. strings and scalar numbers) can be mixed. Multiple case values can be

specified (grouped by parentheses).

12. Ternary operators: an inline if is also available, just like in C/C++:

y = condition ? true_value : false_value

y = (x > T) ? x - T : 0

When the condition is true, only the value for true is evaluated. Conversely, when the condition is false, only

the false-part is executed.

13. Lambda expressions: simply speaking, lambda expressions define inline functions, for example:

v = (x,y) -> 2*x+y

u = x -> 2*x

w = x -> y -> x + y

z = w(10)

print v(1,2), " ", z(5)

a = [[1,2],[2,1]]

print v(a,a)

print w(4)(5)

Note that here, w is a lambda expression that returns another lambda expression (y -> x + y) when evaluated.

As such, partial evaluation is possible, e.g., z=w(10) (see further in section 4.10). Lambda expressions can

contain several sub-expressions and can be spread over several lines, as follows:

print_sum = (a, b) -> (sum=a+b;

print(sum); sum)

The different expressions are separated using semicolons (’;’). The return value of the lambda expression is

always the last expression (in the above example, sum). Using ternary operators, it is fairly simple to define

recursive lambda expressions:

factorial = x -> x > 0 ? x * factorial(x - 1) : 1

14. Functions: the syntax for functions is different from the syntax for lambda expressions:

function [outarg1, ..., outargM] = name (inarg1, ..., inargN)

Here there are M output arguments (outarg1, ..., outargM) and N input arguments (inarg1, ..., inargN).

“name” is the name of the function. Note that all output arguments must be assigned, otherwise the function

call fails. An example:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 18

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS Chapter 2

function y = do_something(x)

y = x * 2

endfunction

a = [[1,2],[2,1]]

b = do_something(a)

print b

Calling a function with multiple output arguments requires multiple variable assignment:

function [x, y] = compute(a, b)

x = a + b

y = a * b

endfunction

[u, v] = compute(2,3)

print u, " ", v

Functions can contain inner functions (up to arbitrary nest depths). The inner functions (direct childs, not

siblings) can then only be accessed from the outer function. For example:

function y = colortransform (x : vec3, cname)

function a = hsv2rgb (c)

h = floor(c / 60)

f = frac(c / 60)

v = 255 * c

p = v * (1 - c)

q = v * (1 - f * c)

t = v * (1 - (1 - f) * c)

match h with

| 0 -> a = [v, t, p]

| 1 -> a = [q, v, p]

| 2 -> a = [p, v, t]

| 3 -> a = [p, q, v]

| 4 -> a = [t, p, v]

| _ -> a = [v, p, q]

endmatch

endfunction

if cname=="hsv2rgb"

y = hsv2rgb(x)

else

error "the specified color transform ",cname, " is not supported!"

endif

endfunction

Argument types can optionally be specified, as shown above in x : vec3. Quasar will check at compile-time

(and run-time) if the arguments are of the correct type, otherwise an error will be raised. The presence or

absence of argument types has no further influence on the execution and end result of the program (except

when types do not match and an error is generated). However, specifying argument types can help the Quasar

optimizer to generate more efficient code.

Function handles can also be used, for example:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 19

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS Chapter 2

my_func = colortransform

print my_func([0.2, 0.2, 0.3])

15. Optional function arguments: functions can have optional arguments. In case an argument is missing, the

default value is used. For example:

function [y, k] = my_func(b : mat, a : scalar = 4)

print a + b

y = k = 0

endfunction

my_func(2)

Since my_func is called with one argument, the default value for the second argument will be used (4 in this

case).

Hence, functions can have multiple outputs and optional arguments, whereas lambda expressions can not.

Note that the optional function arguments can - on their turn - be expressions and even function calls:

function [y, k] = my_func(b : mat, a : mat = eye(4))

function [y, k] = my_func(b : mat, a : mat = A .* B)

function [y, k] = my_func(b : mat, a : mat = 2 * b)

Note that by default, variable references (if the name does not correspond to another input argument) refer to

the outer context in which the function is defined. They capture the value at the time the function is defined.

The variables are defined in the order that they are put as argument. The following would lead to an error:

function [y, k] = my_func(a : mat = 2 * b, b : mat)

Here, b is not defined at the time a = 2 * b is evaluated.

16. Cell matrices: vectors, matrices and cubes can be grouped in a cell-structure. Cell matrices are either created

using the function cell or using the special designated quotes ‘’. copy(.) performs a deep copy of a cell

matrix (i.e. the function recursively applies copy(.) to all its elements). Some examples are given below:

A = cell(2,2)

G = cell(3)

A[0,0] = eye(4)

A[1,1] = 3

A[0,1] = cell(1,4)

A[0,1][1] = ones(3,3)

A[0,1][1][0,0] = 2

print A[0,1][1]*3

print size(A)*2

B = copy(A)

C = B-A

print C[0,0]

D = {A,B,C}

D_names = {"A","B","C"}

print D_names[1]

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 20

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS Chapter 2

print size('')

One important special feature is that operations on cell matrices are supported when the different operands

have the same structure. It is possible to compute the sum of two cell matrices using:

C = B+A

Althernatively, we can multiply all elements of a cell matrix by a constant:

C = B*4

Or, we can use cell matrices in function calls (note that this is only allowed with built-in functions).

C = max(B,4)

Cell matrices are convenient structures especially for rapid prototyping. However, because cell matrices can store

any data, type inference that is required for efficient parallelization may fail on cell matrices. For this purpose, it

is useful to use fully typed cell matrices (see section §3.5).

17. Dynamic evaluation: string expressions can be parsed and evaluated at runtime using the eval(.) function:

val = eval("(x) -> 3*eye(x)")(8)

Here, the eval function parses the string expression ”(x) -> 3*eye(x)´´ and returns a corresponding lambda

expression. This lambda expression can then be evaluated at the same speed as “regular” lambda expressions.

This can be useful for simulations (e.g. passing functions through the command line).

18. Reading an input image:

img_in = imread("lena_big.tif")

Grayscale images return a two-dimensional matrix, color images return a three-dimensional cube, in which

the length of the third dimension is either 3 (RGB) or 4 (RGBA - RGB with an alpha channel).

19. The spread operator: the spread operator “...´´ allows to unpack vectors to arbitrary indices or function

parameters. Using the spread operator, the following lines of code can be simplified:

pos = [0,1,2]

y = im[pos[0],pos[1],pos[2],0] % Before

y = im[...pos, 0] % After

luminance = (R,G,B) -> 0.2126 * R + 0.7152 * G + 0.0722 * B

c = [128, 42, 96]

lum = luminance(c[0],c[1],c[2]) % Before

lum = luminance(...c) % After

The spread operator is in particularly useful in combination with variadic functions (see section §4.8).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 21

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS Chapter 2

Importing .q files: .q files can contain multiple variable and function definitions which can be accessed from other

.q programs. To do so, the import keyword can be used. The import keyword should be used only at the global

scope (hence not within functions or control structures) and at the beginning of the Quasar module. For example:

import "system.q"

import "imfilter.q"

% all definitions from system.q and imfilter.q are now available.

im = imfilter(imread("img.tif"),ones(7,7))

There is one exception: “main” functions are completely skipped and hence not imported (see section 13.1). Also,

.q files are only to be imported once (multiple imports will have no effect and will be ignored by the compiler), and

the import definitions must be placed on the beginning of the program.

Syntax notice: the control structure keywords are as follows: if → endif, for → endfor, type → endtype,

while → endwhile, match → endmatch, function → endfunction, try → endtry. In older versions of Quasar,

the keywords were: if → endif, for → end, type → end, while → end, match → end, function → end,try →
end. We have found experimentally that matching the control structure endings with the beginnings enhances not

only the readability of the code but also prevents certain types of bugs (especially with nested control structures).

For legacy code, the Quasar compiler still accepts the old endings. This is done on a per-file basis. When both

control structure endings are mixed, the compiler generates an error. So the user is encouraged to use the new

control structure endings!

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 22

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.2. A BRIEF INTRODUCTION OF THE TYPE SYSTEM Chapter 2

Table 2.2: Quasar main primitive types. Note: to use the types with asterisk(*), it is required to import the module
“inttypes.q”

type 0-dim 1-dim 2-dim 3-dim n-dim

integer number int ivec(*) imat(*) icube(*) icube{n}(*)
shorthand for vec[int] mat[int] cube[int] cube{n}[int]

scalar number scalar vec mat cube cube{n}

shorthand for vec[scalar] mat[scalar] cube[scalar] cube{n}[scalar]

complex scalar number cscalar cvec cmat ccube ccube{n}

shorthand for vec[cscalar] mat[cscalar] cube[cscalar] cube{n}[cscalar]

2.2 A brief introduction of the type system

Note: a full depth explanation on the Quasar user-defined types will be given in section §3. Here we only give a

brief introduction.

Quasar has an array-based type system, that facilitates working with multi-dimensional data, which includes for

example conversions between vectors and matrices. In general, variable types are implicit (hence do in general not

need to be specified by the user). In contrast to the MATLAB/Octave, the Quasar compiler obtains the types of

the variables through type inference. The type inference is not strict : if the compiler is not able to figure out the

type of a variable, this variable will considered to be of an unknown type (denoted by the type ’??’). The main

primitive types of Quasar are summarized in table 2.2. The types vec, mat, cube, cvec, cmat, ccube, ... are actually

shorthands for their corresponding generic versions with explicit type parameters (see further in section §6). Also

the shorthands are listed in the table. Additional primitive types are given in table 2.3.

The dimensionality can be specified via the brace syntax: e.g., cube{4} denotes a four-dimensional array. Quasar

defines “infinite” dimensional data types: cube{:} and ccube{:}, although in practice, the current implementation

only supports up to 16-dimensional data structures.

The relation between the different “dimensional” types is defined as follows:

vec ⊂ mat ⊂ cube ⊂ cube{:}

ivec ⊂ imat ⊂ icube ⊂ icube{:}

cvec ⊂ cmat ⊂ ccube ⊂ ccube{:}

Hence, every vector can be passed to a function requiring a matrix, and every matrix can be passed to a function

requiring a cube. Whether a value A is vector, matrix, or cube, depends on the number of dimensions of A:

Ahas type



vec if ndims(A)==1

mat if ndims(A)==2

cube if ndims(A)==3

cube{n} if ndims(A)==n

where ndims returns the total number of dimensions. Note that scalar numbers are not part of the relationship

(hence scalar * vec). This is mainly for implementation efficiency.

The consequence is that, functions defined for arguments of type cube can also accept arguments of type vec and

mat. For example, for digital images, cube can both represent color images (with dimensions M × N × 3) and

grayscale images (with dimensions M ×N × 1). In some cases, it is useful to indicate size information in the type.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 23

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.2. A BRIEF INTRODUCTION OF THE TYPE SYSTEM Chapter 2

This can be done by adding size parameters to the type: e.g., cube(:,:,3) denotes a 3D array for which the size

in the last dimension is always 3. Size parameters give invaluable information to the compiler allowing specialized

code to be generated.

Explicitly annotating the types of variables can bring performance benefits, although for code simplicity it is advised

to only specify the type when necessary: in many cases the type is obtained and propagated using type inference.

For example, when using the function im=imread("image.png", "rgb"), the compiler will infer that the type of

im is cube(:,:,3).

It is possible to check at run-time whether a variable (or intermediate result) has a certain type, using the function

type(A:typename). Moreover, the check can be performed using type checks and/or assertions, for example:

print(variable:cube[int])

print(1:cube) % Error: Type check failed: `int'const` is not `cube`

assert(type(1,"scalar"))

assert(type(1i,"cscalar"))

assert(type(zeros(2,2),"mat"))

assert(type("Quasar","string"))

In case one of the above the type checks fail, a compiler error will be generated. Additionally, the file system.q

defines a number of lambda expressions for checking types:

i s r e a l = x −> type (x , ” s c a l a r ”) | | type (x , ” vec ”) | | type (x , ”mat ”)
| | type (x , ”cube ”)

i scomplex = x −> type (x , ” c s c a l a r ”) | | type (x , ” cvec ”) | | type (x , ”cmat ”)
| | type (x , ”ccube ”)

i s s c a l a r = x −> type (x , ” s c a l a r ”) | | type (x , ” c s c a l a r ”)
i s v e c t o r = x −> type (x , ”vec ”) | | type (x , ”cvec ”)
i smat r i x = x −> type (x , ”mat ”) | | type (x , ”cmat ”) | | i s v e c t o r (x)
i s cube = x −> type (x , ”cube ”) | | type (x , ”ccube ”) | | i smat r i x (x)

Under some circumstances, the Quasar compiler is not able to figure out the types of the variables through inference.

One example is the load function, which reads data from a file (through a process called deserialization) and stores

them into variables.

[A, B] = load("myfile.dat")

The file load operation is only performed at runtime, the result depends on the content of the file being loaded and

correspondingly the compiler can not predict the types of the variables. Then it makes sense to give the compiler

some type information, such that it can perform some smart optimizations when needed:

assert(type(A,"ccube"))

assert(type(B,"vec"))

The assert function then has a two-fold purpose: 1) it gives the compiler information about the types of A and B

and 2) it performs a runtime check to validate the data read from“myfile.dat”.

An alternative (and perhaps cleaner) way to check the type of the variable is by using type annotations. The above

example then becomes:

[A : ccube, B : vec] = load("myfile.dat")

In case the types do not match, the runtime system will generate an error message. Type annotations need to be

declared only the first time the variable is used.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 24

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.2. A BRIEF INTRODUCTION OF THE TYPE SYSTEM Chapter 2

Table 2.3: Additional primitive types “first-class citizens”

Type Purpose

string Sequences of characters
lambda_expr Lambda expressions

function Function handles
kernel_function Kernel functions

object Objects
?? Unspecified type (i.e. determined at run-time)

Table 2.4: Type conversion table

From/To int/ivec/imat/icube scalar/vec/mat/cube cscalar/cvec/cmat/ccube

int/ivec/imat/icube - float(.) complex(.) / complex(re,im)

scalar/vec/mat/cube int(.) - complex(.) / complex(re,im)

cscalar/cvec/cmat/ccube int(real(.)) / int(imag(.)) real(.) / imag(.) -

Finally, type conversion is generally not needed in Quasar (avoided for computational performance reasons), al-

though a conversion table is given in table 2.4. Only for generic programming purposes (see section §6), an

overridable type conversion function cast(x, new_type) is available.

Lambda expressions can also be explicitly typed. Quasar follows typing conventions similar to the Haskell and ML

programming languages. For example:

• [int -> int]: a function that takes ”int” as input and gives “int” as output

• [(mat, scalar) -> (mat, mat)]: a function that takes two input arguments (of type mat and scalar) and

that has two output arguments (both of type mat)

• [int -> int -> int]: a function that projects an integer input onto a lambda expression of type int ->

int.

• [...scalar -> scalar]: a variadic function that takes an arbitrary number of scalar values as input and

that returns a scalar number.

Lambda expressions (especially those that use closures, see section 4.2) are very powerful in Quasar. To reduce

the overhead associated with calling lambda expressions on computation devices, the Quasar compiler attempts to

inline lambda expressions and functions whenever possible or beneficial.

2.2.1 Floating point representation

In Quasar, the internal representation of scalar numbers “scalar” (or complex scalar numbers “cscalar”), is usually

not specified at the code level. This allows the floating point representation to be changed on a global level. By

default, Quasar will use single precision floating point numbers (see table 2.5). However, it is possible to compile

and run the programs using double precision as well, by passing the -double command line option to Quasar, e.g.:

./Quasar.exe -debug -double script.q

When numerical precision is not of uttermost importance, it is recommended to use single precision. Note that some

older GPUs have limited double precision FP support. CUDA devices before compute capability 1.3 even do not

have double precision FP support. Moreover, using double precision FP numbers doubles the memory bandwidth.

Consequently, programs using double precision may run up to 2x slower than programs with single precision FP.

Additionally, several consumer GPUs (e.g., Geforce series) have a double precision throughput that is much lower

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 25

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.2. A BRIEF INTRODUCTION OF THE TYPE SYSTEM Chapter 2

Table 2.5: Overview of floating point representations

IEEE 32-bit (single precision) IEEE 16-bit (half precision) IEEE 64-bit (double precision)
Quasar type scalar’single scalar’half scalar’double

Significand 23 bits 10 bits 52 bits
Exponent 8 bits 5 bits 11 bits

Minimum pos. value 1.17549435× 10−38 5.9605× 10−8 2.225073858507201× 10−308

Maximum pos. value 3.40282347× 1038 65504.0 1.797693134862316× 10308

Exact integer repr. -224 + 1 to 224 − 1 (16, 777, 215) -211 + 1 to 211 − 1 (2, 048) −253 − 1 to 253 − 1

than the floating point precision throughput. However, there are some reasons to enable double precision in Quasar

programs:

• When numerical accuracy is an issue: remark that results obtained using double-precision arithmetic may

differ from the same operations obtained using single-precision arithmetic, due to the greater precision and

due to rounding errors. Therefore, it is important to compare and express the results within a certain tolerance

rather than expecting them to be exact. Moreover, GPU devices typically flush numbers smaller than the

minimum representable value (in absolute sense) to zero. Correspondingly, by using double precision FP

numbers it may be possible to reduce some of the error introduced by underflow, as the minimal representable

value is of the order 10−308 for double, while 10−38 for single precision (see table 2.5).

• For comparing the results of the algorithms to MATLAB/C++ implementations using double precision FP

numbers.

Often it is useful to check whether the program is not suffering from floating point inaccuracies. This can simply

be done by running the program once in double precision mode.

Note: NVidia GPU’s GTX 260, 275, 280, 285, 295 chips (with compute capability 1.3) have a low performance in

double precision computations (about 1/8 of single precision performance). Devices of the NVidia Fermi architecture

(compute capability 2.0+) have 1/2 the performance of single precision operations. Performance is greatly improved

with either NVidia Tesla cards or the NVidia Titan (which is based on the Kepler architecture). For full details,

see https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions.

Finally, recall that FP math is not associative, i.e. the sum (A+B)+C is not guaranteed to be equal to A+(B+C).

When parallelizing computations, the order of the operations is often changed (and may be even unspecified), leading

to results which may differ each time the technique runs even with the same input data. This limitation is not

inherent to Quasar, but applies to the specific approach used to perform parallel computations using floating point

numbers. The example “Accurate sum” gives more information in this issue (see section 10.7); also in section 13.6

we explain how parallel code can be written that does not depend on this “non-deterministic” behavior.

The global constant “eps” is available for determining the machine precision (similar to FLT_EPSILON/DBL_EPSILON

in C or eps in Octave/Matlab). The functions maxvalue(scalar) and minvalue(scalar) can be used to determine

the maximum and minimum values representable in floating point format.

2.2.2 Mixed precision floating point computations

It is recommended to use the default scalar data type (with globally defined precision) as much as possible. However,

in some cases, it is desirable to perform certain parts of the computation in a higher precision (e.g., when numerical

accuracy is important) or even in a lower precision (e.g., when memory and/or computation time counts). Therefore

Quasar allows specifying the required precision as part of the scalar type:

• scalar’single: represents a 32-bit IEEE single precision floating point type (FP32)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 26

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.2. A BRIEF INTRODUCTION OF THE TYPE SYSTEM Chapter 2

• scalar’double: represents a 64-bit IEEE double precision floating point type (FP64)

• scalar’half: represents a 16-bit IEEE half precision floating point type (FP16)

The half precision floating point representation (FP16) cannot be set globally (due to its inherent precision and

range restrictions), however, it is possible to write functions that mix scalar types of different precision. Mixing

FP16 and FP32 appears to be common in machine learning (e.g., convolutional neural networks). Pascal, Volta

and Turing GPUs also allow support FP16 computations natively. Volta’s tensor cores provide mixed matrix

multiply-accumulate operations, in which the matrix is stored in FP16, the result is represented in FP32.

Remark : Quasar currently does not support bfloat16, the half-precision floating point format supported by Google’s

Tensor Processing Units (TPUs).

2.2.3 Integer types

Next to floating point numbers, Quasar has also (limited) support for integer types. The default integer type is

“int” (signed integer). Its bit length depends on the computation engine, but is guaranteed to be at least 32-bit.

There are also integer types with a pre-defined bit length, these are mainly provided 1) to enable more efficient

input/output handling (e.g. reading/writing of images in integer format), or 2) to write certain algorithm in which

memory usage/memory bandwidth should be as low as possible. Generally, the use of the integers with pre-defined

bit length should be avoided. For completeness, these types are listed below:

• int8: a signed 8-bit integer (with range -128..127)

• int16: a signed 16-bit integer (with range -32768..32767)

• int32: a signed 32-bit integer (with range −231..231 − 1)

• int64: (not fully implemented yet)

• uint8: an unsigned 8-bit integer (with range 0..255)

• uint16: an unsigned 16-bit integer (with range 0..65535)

• uint32: an unsigned 32-bit integer (with range 0..232 − 1)

• uint64: an unsigned 64-bit integer (with range 0..264 − 1)

A matrix containing 8-bit integers can be obtained as follows:

A = mat[int8](rows,cols)

Note that, by default, arithmetic operations for integer matrices are disabled (e.g. summing, subtracting, conversion

to floating point etc.). These operations can be included by importing the inttypes library (import "inttypes.q”).

Integer types can have special modifiers (the modifier can be added by writing a apostrophe ’ directly after the type

name). These modifiers indicate how the conversion from a floating point number / integer number with larger bit

depth to the considered integer type takes place.

• int’checked (default): generates an error when the integer can not be represented using the current type

(note: not implemented yet)

• int’sat: in case of overflow, the integer is saturated (clipped) to the highest (or lowest) possible value that

can be represented.

• int’unchecked: performs no integer overflow checking. This may often be the fastest.

The following function, which sums two 8-bit unsigned integer matrices, illustrates the usage of integer modifiers:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 27

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.2. A BRIEF INTRODUCTION OF THE TYPE SYSTEM Chapter 2

function y : mat[uint8'sat] = add(a : mat[uint8], b : mat[uint8])

for m=0..size(a,0)-1

for n=0..size(a,1)-1

y[m,n] = a[m,n] + b[m,n]

endfor

endfor

endfunction

Here, integer saturation is used in case the sum of a[m,n] and b[m,n] does not fall in the range 0..255.

Important note

Variables are implicitly integer when defined by a constant with no decimal sign. This may have some unexpected

consequences as in the following example:

a = 0 % a is integer

for n=0..N-1

a += x[n] % x[n] is implicitly converted to integer

endfor

Here, x[n] is automatically converted to integer. To warn the programmer, a type conversion warning message will

be shown. If it is desired to declare a as a scalar value, the first line needs to be replaced by a = 0.0.

2.2.4 Fixed sized datatypes

As already mentioned in section 2.2, vectors and matrices can optionally have their size specified in any dimension.

For example, a : cube(:,4,:) always has size(a,1) == 4. The size acts as a constraint on the specialized type;

the constraint is checked by both the compiler and the runtime. ’:’ indicates that the length is unspecified (not

known at compile-time).

Using this technique, it is easy to define single instruction multiple data (SIMD) operations. For x86/64 CPU

targets in Quasar, vectors of length 4 (vec(4)) may be3 mapped onto SSE datatypes while vectors of length 8

(vec(8)) may be mapped onto AVX datatypes. See section §12 for more information.

In generic functions, it is possible to use type parameters for this purpose (for example cube(:,:,P)). For the

following function:

function [] = color_transform[P : int](im_in : cube(:,:,P), im_out : cube(:,:,P))
...

endfunction

array size errors can be caught early in the development process: when the function color_transform is called and

the compiler cannot guarantee that im_in and im_out have the same size in the third dimension, a compiler error

will result.

2.2.5 Higher dimensional matrices

Higher-dimensional matrices (with dimension > 3) need to be specified using an explicit dimension parameter.

For example cube{4} denotes a 4-dimensional array. The array with unspecified (infinite) dimension in Quasar is

cube{:}. This is useful for generic specialization purposes (see further in section §6). To express higher-dimensional

3depending on the configuration settings and depending on whether the specific operation is accelerated by the processor.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 28

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.2. A BRIEF INTRODUCTION OF THE TYPE SYSTEM Chapter 2

loops for which the dimensionality is not known in advance, the functions ind2pos and pos2ind convert between

position coordinates and linear indices, as illustrated by the following example:

function y:'unchecked = multidim_subsampling(x : cube{:}, factor : int)

y = uninit(int(size(x)/factor))

{!parallel for}

for i = 0..numel(y)-1

p = ind2pos(size(y), i)

y[p] = x[p*factor]

endfor

endfunction

Here, a higher dimensional cube is subsampled by factor along all dimensions of the cube. This technique is

particularly useful for implementing operations with unknown dimensionality of the input parameters (as e.g., in

Kronecker products).

2.2.6 User-defined types, type definitions and pointers

Quasar supports user-defined types (UDTs) and pointers: the user-defined types are defined as classes, as illustrated

below:

type point : class

x : scalar

y : scalar

endtype

The type keyword is always followed by a type definition. The class point can be instantiated using its default

constructor:

p = point()

or:

p = point(x:=4, y:=5)

Remark that the arguments of the constructor are named. The order of the arguments can then also be changed:

p = point(y:=5, x:=4)

By default, classes in Quasar are immutable. This means that, once initialized, the value of the class cannot be

changed (or a compiler error will be generated)! Classes can also be made mutable, as follows:

type point : mutable class

x : scalar

y : scalar

endtype

Immutable classes allow for some optimizations to be applied. For example, they can be stored in constant device

memory, some memory transfers are eliminated, moreover, the Quasar runtime does not need to check if the value

of this class has been changed in device memory. For these reasons, it is recommended to use immutable classes

whenever possible.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 29

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.2. A BRIEF INTRODUCTION OF THE TYPE SYSTEM Chapter 2

Additionally, a UDT can contain other UDTs:

type rectangle : class

p1 : point

p2 : point

endtype

Remark that the fields of the rectangle (p1, p2) are stored in-place. This means that the internal storage size of the

UDT is the sum of the storage sizes of its fields. In this case, using single precision FP, elements of the point class

will take 8 bytes and consequently elements of the rectangle class will contain 16 bytes.

Like in other programming languages (e.g. C/C++, Pascal), it is also possible to define a rectangle that stores

references to the point class. Therefore, Quasar supports Pascal-type pointers:

type pt_rectangle : class

p1 : ^point

p2 : ^point

endtype

Remark that in many programming languages, pointers can be a source of programming errors (e.g. dangling

pointers, uninitialized pointers etc). For this reason, the pointers in Quasar have special properties, that allow them

to be safe in usage:

• Multiple indirections (^^point) are not allowed.

• All pointer values should be initialized, either used a constructor of the class, or using a null pointer (nullptr).

For example, the above class can be initialized using:

r = pt_rectangle(p1:=nullptr, p2:=point(1,2))

• Pointers are only allowed to be used for UDTs, not for scalars (scalar, cscalar, ...) or matrices (vec, mat,

cube, ...).

• All pointer values are typed. It is for example not allowed to declare a pointer to an unknown type (^??).

• Pointer arithmetic is also not allowed.

Internal detail: the pointers in Quasar rely on customized form of reference counting to help track allocation of

memory, including a technique to solve memory leaks caused by potential circular references. Moreover, the pointers

make an abstraction from the particular device: the object can reside either in CPU memory, GPU memory, or

both.

It is also possible to define (multi-dimensional) arrays of UDTs, using parametric types:

type point_vec : vec[point]

type point_mat : mat[point]

type point_cube : cube[point]

type rectangle_vec : vec[rectangle]

type pt_rectangle_vec : vec[^pt_rectangle]

Using UDT arrays is often more efficient than storing the individual elements of the UDT in separate matrices.

This is because 1) the indexing often only needs to be performed once and 2) because better memory coalescing

and caching. The UDT arrays can be initialized by zero (or using nullptr’s), in the following way:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 30

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.3. AUTOMATIC PARALLELIZATION Chapter 2

a = point_vec(10)

b = point_mat(4, 5)

c = point_cube([1, 2, 3])

Note that a type definition (type x : y) is required for this construction. The following is (currently) not

supported:

a = vec[point](10)

Moreover, the multi-dimensional arrays and UDTs may contain variables with unspecified types:

type point : class

x : ??

y : ??

endtype

type cell_vec : vec[??]

type cell_mat : mat[??]

type cell_cube : cube[??]

One caveat is: variables with unspecified types do not support automatic parallelization (see further in section 2.3)

and can not be passed to kernel functions (see section 2.4.1).

UDTs can also contain vectors/matrices:

type wavelet_bands : mutable class

LL : ^wavelet_bands

HL : mat

LH : mat

HH : mat

endtype

The premise is that this class does not have a default constructor (wavelet_bands()), because there are no default

values for matrices. Also nullptr’s are not allowed. Hence, it is necessary to explicitly specify the value of

wavelet_bands:

bands = wavelet_bands(LL:=nullptr,

HL:=ones(64,64),

LH:=ones(64,64),

HH:=ones(64,64))

2.3 Automatic parallelization

The Quasar compiler automatically attempts to parallelize for-loops, depending on the matrix indexing scheme,

input/output variables, constants and data dependencies. For example, the sequential code fragment, demonstrating

a spatial filtering using a box filter (mask):

im = imread("image_big.tif")

im_out = zeros(size(im))

N = 5

mask = ones(2*N+1,2*N+1)/(2*N+1)^2

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 31

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.3. AUTOMATIC PARALLELIZATION Chapter 2

for m=0..size(im,0)-1

for n=0..size(im,1)-1

a = [0.,0.,0.]

for k=-N..N

for l=-N..N

a += mask[N+k,N+l] * im[m+k,n+l,0..2]

endfor

endfor

im_out[m,n,0..2] = a

endfor

endfor

automatically expands to the following equivalent parallel program:

im = imread("image_big.tif")

im_out = zeros(size(im))

N = 5

mask = ones(2*N+1,2*N+1)/(2*N+1)^2

function []=__kernel__ parallel_func(im:cube,im_out:cube,mask:mat,N:int,pos:ivec2)

a = [0.,0.,0.]

for k=-N..N

for l=-N..N

a += mask[N+k,N+l] * im[pos[0]+k,pos[1]+l,0..2]

endfor

endfor

im_out[pos[0],pos[1],0..2] = a

endfunction

parallel_do(size(im,0..1),im,im_out,mask,N,parallel_func)

In this program, first a kernel function is defined. Next, the parallel_do function launches the kernel function

in parallel for every pixel in the image im. The kernel function processes exactly one pixel intensity, and is called

repetitively by the function parallel_do. When compiling the Quasar program, the kernel functions and automat-

ically parallelized loops are compiled, depending on the computation engine being used, to CUDA or native C++

code (using OpenMP). This ensures optimal usage of the computational resources.

The Quasar optimizer may fail to extract a parallel program, for example because the type of certain variables is

not known or because certain dependencies between variables have been detected (the latter causing the loop to be

executed serially - “serialized”). For mapping algorithms onto hardware, variable types need to be well defined. As

explained in section 2.2, when the variable type is not specified, Quasar uses type inference to derive the exact type

from the context. When this fails, warning messages are displayed on the console during compilation that can help

to make the program parallel, e.g., by explicitly declaring the type (B : vec = ...). Quite often, it may be the

intention of the programmer to have a parallel loop. In this case, it is possible to interrupt the program compilation

when the loop parallelization fails (thereby generating a compiler error). This is possible by putting {!parallel

for} directly before the for-loop to be parallelized:

{!parallel for}

for m=0..size(im,0)-1

for n=0..size(im,1)-1

endfor

endfor

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 32

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

In case the compiler then detects some dependencies between the variables, a warning message will be displayed

reporting these dependencies and the loop will be parallelized despite the warnings (possibly causing data races).

There are some scenarios that currently cannot be handled by the auto-parallelizer (for example polymorphic

variables which change type during the loop). Additionally, certain features cannot be used from inside loops, such

as shared memory functions, thread synchronization... Therefore, and also for full flexibility, it is also possible to

perform the parallelization completely manually. This is described in the following section.

2.4 Writing parallel code using kernel functions

In this section, we describe two ways of writing parallel code:

• basic usage (does not require any prior knowledge on GPU programming) - see section 2.4.2.

• advanced usage (for “experienced” GPU users) - see section 2.4.4.

Most algorithms can be efficiently implemented using the “basic” approach. The advanced usage consists of synchro-

nization, dealing with data races, sharing memory across multiprocessors and other GPU programming techniques,

which may lead to increased performance taking more advantage of the available features.

For beginning users, it is advised to get acquainted first with the basic usage techniques, before considering the

advanced usage. Additionally, kernels written using the “basic usage” approach are often further optimized by the

Quasar compiler to use some more advanced features (see 17).

2.4.1 Basic usage: kernel functions

A kernel function is a Quasar function with a special attribute __kernel__, that can be parallelized. Kernel

functions are launched in parallel on every element of a certain matrix, using the “parallel_do” built-in function.

The __kernel__ attribute specifies that the function should be natively compiled for the targeted computation

engine (e.g. CUDA, CPU). Consequently, __kernel__ functions are considerably faster in execution than host

functions thanks to their parallelization and native code generation. As example, consider the following algorithm:

function [] = __kernel__ color_temperature(x : cube, y : cube, temp,

cold : vec3, hot : vec3, pos : ivec2)

input = x[pos[0],pos[1],0..2]

if temp<0

output = lerp(input,cold,(-0.25)*temp)

else

output = lerp(input,hot,0.25*temp)

endif

y[pos[0],pos[1],0..2] = output

endfunction

hot = [1.0,0.2,0.0]*255

cold = [0.3,0.4,1]*255

img_out = zeros(size(img_in))

parallel_do(size(img_out,0..1),img_in,img_out,temp,cold,hot,color_temperature)

The kernel function is launched on a grid of dimensions “size(img_out,0..1)” using the parallel_do construct.

This means that every pixel in img_out will be addressed individually by parallel_do, and correspondingly the

function color_temperature will be called for every pixel position.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 33

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

For a kernel function, all parameters need to be explicitly typed. Recall that untyped parameters in Quasar are

denoted by ??. Code using untyped parameters cannot be mapped onto an efficient implementation, therefore

compiler will first try to deduce the type from the context. The kernel function is then treated as a generic function

(see section §6). If the type deduction fails, a compiler error will result.

To write efficient kernel functions it is recommended to use vector and matrix types with size constraints. For

example:

• vec(X) (or shortcut4 vecX): corresponds to a vector of length X.

• ivec(X) (or shortcut ivecX): corresponds to an integer vector of length X.

• cvec(X) (or shortcut ivecX): corresponds to a complex-valued vector of length X.

• mat(X,Y) (or shortcut matX xY): a matrix of size X × Y .

• cube(X,Y,Z)(or shortcut cubeX xY xZ): a cube of size X × Y × Z.

• int: integer data type

The explicit size of the vector and matrix parameters allows calculations involving the variables to be mapped onto

an efficient implementation. Additionally, it also helps the type inference: for example, the product of a vector of

length 4 (vec(4)) and a 4× 4 matrix (mat(4,4)) results in a vector of length 4.

However, some datatypes can not be passed as arguments to kernel functions: cell matrices containing unknown

types (??) and strings. To pass cell matrices, use parametrized matrix types (vec[cube], mat[cube], mat[vec],

etc., see section §3). Strings need to be converted to vectors (using the functions fromascii, fromunicode). Device

functions (__device__) possibly containing closure variables (see section 4.2), can also be passed.

For vectors of length ≤ 64, it is most efficient to add the length explicitly in the type as above. Vectors with length

known at compile-time are treated in a special way: the components of the vector are grouped together requiring less

memory read/write requests and may be implemented using SIMD instructions if the underlying back-end compiler

supports them. At the very least, these vectors are allocated on the stack (or registers), which is significantly faster

than in the kernel dynamic memory (see section §8.3). Matrices with size constraints (such as matXxY, cubeXxYxZ)

are also treated as fixed-length vectors internally.

Remark : the current Quasar implementation places a limit on the maximum length of the constraint, or the

product of the dimensions (e.g., X × Y for matXxY, X × Y ×Z for cubeXxYxZ. This limit is 64). When the vector

length is longer, the specification of the value will not have an effect (apart from type inference purposes).

Inside __kernel__ and __device__ functions, it is recommended to use integers instead of scalars (when possible).

This may yield a speed-up of about 30% for CUDA targets and even more for CPU targets. When a scalar constant

contains a decimal point (e.g., 1.2), the compiler will consider this constant to be a floating point number, otherwise

it will be treated as an integer.

The syntax of the parallel_do function is as follows:

parallel_do(dimensions, inarg1, ..., inargN, kernel_function)

where dimensions is a vector. Note that normally kernel function cannot have output arguments (there is a special

advanced feature that allows kernel functions to return values of certain types, see section 4.7, but this feature is

only for specific use-cases). Instead, in most use cases the return values should be written to the input arguments

passed by reference, i.e. arguments of types vec, mat, cube, cvec, cmat, ccube.

There are some special arguments that can be defined in the kernel function declaration, but that do not need to

be passed to parallel_do:

4replace X by the exact value, for example vec2, vec3, ...

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 34

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

• pos (of type int, (i)vecX): the current position of the work item being processed. Note that a“work item”can

be either an individual pixel, or a “group of pixels”, depending on how you specify the “dimensions” argument.

• blkpos (of type int, (i)vecX): the current position within the block (for advanced users, see section 2.4.4)

• blkidx (of type int, (i)vecX): the block index (for advanced users, see section 2.4.4)

• blkdim (of type int, (i)vecX): the current dimensions a block (for advanced users, see section 2.4.4). Inter-

nally, the data is processed on a block-by-block basis. The dimensions of a block depend on the computation

engine in use. For example, for the CUDA computation engine (with CUDA compute capability 2.0), the

block dimensions can be as large as 16×32 or 32×16. For the CPU computation engine, the block dimensions

will rather be 1×#num processors.

• blkcnt (of type int, (i)vecx): the number of blocks in each dimension (for advanced users, see section 2.4.4)

• warpsize (of type int): the warp size of the device (for advanced users, see section 2.4.4)

The parallel_do function basically executes the following sequential program in parallel:

blkdim = choose_optimal_block_size(kernel_function) % done automatically

for m=0..dimensions[0]-1

for n=0..dimensions[1]-1

for p=0..dimensions[2]-1

pos = [m,n,p]

blkpos = mod(pos, blkdim)

blkidx = floor(pos/blkdim)

kernel_function(inarg1, ..., inargN, [pos], [blkpos], [blkidx], [blkdim])

endfor

endfor

endfor

Here, first optimal block dimensions (blkdim) for the given kernel function are being selected. Then, ker-

nel_function is run inside the three loops, prod(dimensions)=dimensions[0]×dimensions[1]×dimensions[2]
times.

Special modifiers are available for kernel function arguments. The modifiers are specified using the apostrophe-

symbol:

function [] = __kernel__ imfilter_kernel_nonsep_mirror_ext(y : cube'unchecked,

x : cube'unchecked, mask : mat'unchecked'const, center : ivec2, pos : ivec3)

These modifiers specify how vector/matrix/cube elements are accessed, and in particular enable efficient boundary

handling in image processing:

• ’safe: disregards writes outside the data boundaries, reads outside the data boundaries evaluate to zero.

• ’circular: performs circular boundary handling

• ’mirror: mirrors when accessing outside the data boundaries.

• ’clamped: clamps (saturates) to the data boundaries (y[0] = y[-1] = y[-2] = ... and y[N-1] = y[N]

= y[N+1] = ...)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 35

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

• ’unchecked (warning: dangerous usage - your program may crash if not used properly): specifies no bounds

checking on the input/output data. In case of access outside the data boundaries, a runtime error may or

may not be generated. Specify this modifier in case you are sure your kernel/device function is 100% correct,

and when you want to enjoy a modest extra code speedup.

• ’checked: the opposite of ’unchecked: generates an error when indices are out of the data boundaries.

Quasar will give information on which matrices are the prime suspect.

• ’const: indicates that the matrix variable is constant and will not be changed inside the kernel function.

The default access modes are currently ’safe (inside kernel/device functions) and ’checked outside of kernel/device

functions (for performance reasons). In case the program behavior depends on the access mode, it is best to explicitly

indicate the access mode.

Finally, there are some rules with respect to the calling conventions for kernel functions:

• Kernel functions can not have optional arguments.

• A kernel function can not call a “host” function.

• A kernel function can call a “device” function (see section 2.4.2)

• A kernel function can call a lambda expression declared with the __device__ attribute (see section 2.4.2).

• A kernel function can call a lambda expression declared without the __device__ attribute, on the premise

that the lambda expression can be inlined.

• A kernel function can call other kernel functions, through parallel_do (see further in section §4.4). A kernel

function cannot directly call another kernel function using a standard function call.

There are some special functions that can be used within kernel functions:

• periodize(x, N): periodizes the input coordinate, i.e. k + a ·N , with 0 ≤ k < N becomes k. This function

is used automatically when the modifier ’circular is specified.

• mirror_ext(x, N): mirrors the input coordinate between [0, N−1]. This function is used automatically when

the modifier ’mirror is specified.

• clamp(x, N): clamps the input coordinates to [0, N]. This function is used automatically when the modifier

’clamped is specified.

• int(x): converts the input argument to integer (using type casting)

• float(x): converts the input argument to floating-point (using type casting)

• shared(dims), shared_zeros(dims), shared[T](dims): the function has a special meaning - allocation of

shared memory (see section 2.4.4).

2.4.2 Device functions

In the example in the previous section, the linear interpolation function lerp is defined as:

lerp = __device__ (a : scalar, b : scalar, d : scalar) -> a + (b - a) * d

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 36

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

Table 2.6: Quasar: which function types can call ...?

From/To “ host” __device__ __kernel__

“ host” Yes Yes
parallel_do/serial_do only__device__ No Yes

__kernel__ No Yes

Device functions are the only functions (next to kernel functions) that can be called from a kernel/device function.

The __device__ function specifies that the function should be natively compiled for the targeted computation

engine (e.g. CUDA, CPU), however, in contrast to kernel functions, they can not be used as argument to a call of

the parallel_do function. Device functions are hence useful to aid the writing of kernel functions. For example, if

one often needs a 2D vector that is orthogonal to a given 2D vector, one can define:

orth = __device__ (x : vec2) -> [-x[1], x[0]]

The function orth can then be used from other functions (also outside kernel/device functions).

table 2.6 lists whether functions of different types can call each other. Note that there are a number of combinations

that are not supported:

• A device function cannot call a host function. This is simply because “default” functions are, by default, not

natively compiled. However, in many cases, it is possible to convert the host function to a device function, by

adding the __device__ modifier.

• A device function cannot call a kernel function directly, nor can a kernel function call another kernel function

(unless parallel_do is used, see further in section §4.4). This is because kernel functions have special facilities

for parallelization (e.g. they can use OpenMP etc).

• However, a host function can call a device function. This is useful for declaring functions that can be used

both from host code as from kernel code. An example is the sinc function:

sinc = __device__ (x:scalar) -> x == 0 ? 1.0 : sin(x)/x

print sinc(0) % call the device function

Remark: kernel and device functions have dedicated types, containing respectively __kernel__ and __device__

type modifiers. For the above definitions:

imfilter_kernel_nonsep_mirror_ext : _

[__kernel__(cube,cube,mat,ivec2,ivec3) -> ()]

lerp : [__device__(scalar,scalar,scalar) -> scalar]

orth : [__device__(vec2) -> vec2]

These types can be used for defining more general functions that use device/kernel functions as input argument.

For example:

add = __device__ (x : scalar, y : scalar) -> x + y

sub = __device__ (x : scalar, y : scalar) -> x - y

mul = __device__ (x : scalar, y : scalar) -> x * y

orth = __device__ (x : vec2) -> [-x[1], x[0]]

ident = __device__ (x : scalar) -> sub(add(x, 2*x), 2*x)

function [] = __kernel__ my_kernel (X : mat, Y : mat, Z : mat, pos : ivec2)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 37

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

Z[pos] = add(X[pos], Y[pos])

v = orth([X[pos], Y[pos]])

endfunction

X = ones(4,4)

Y = eye(4)

Z = zeros(size(X))

parallel_do(size(Z),X,Y,Z,my_kernel)

One special feature of device functions, is that they can be used as function pointers and passed to kernel functions.

This can be used to reduce the number of kernel functions, or as an alternative to dynamic code generation:

% Definition of a __device__ function type

type binary_function : [__device__ (scalar, scalar) -> scalar]

add = __device__ (x : scalar, y : scalar) -> x + y

sub = __device__ (x : scalar, y : scalar) -> x - y

mul = __device__ (x : scalar, y : scalar) -> x * y

function [] = __kernel__ arithmetic_op(Y : cube, _

A : cube, B : cube, fn : binary_function, pos : ivec3)

Y[pos] = fn(A[pos], B[pos])

endfunction

A = ones(50,50,3)

B = rand(size(A))

Y = zeros(size(A))

parallel_do(size(Y),Y,A,B,add,arithmetic_op)

Unfortunately, there is a performance penalty associated to function pointer calls: the extra indirection avoids the

compiler to inline the function. For this reason, when possible the Quasar compiler will attempt to avoid function

pointer calls (by substituting the exact function).

2.4.3 Memory usage inside kernel or device functions

There are three types of memory that can be used inside kernel or device functions:

1. local memory : this is memory that is local to the function, and each parallel run of the kernel function (called

’thread’) contains a private copy of this memory. Below are a few examples of the creation of local memory:

A = [0, 1, 2, 3] % Generates a variable of type 'ivec4'

B = [0., 1., 2., 3.] % Generates a variable of type 'vec4'

C = [1 + 1j, 2 - 2j] % Generates a complex-valued variable of type 'cvec2'

D = ones(6) % Generate a vector of length 6, filled with 1.

E = zeros(8) % Generates a vector of length 8, filled with 0.

F = complex(zeros(4)) % Generates a complex-valued vector of length 4

For the GPU computation engine, there are however a few limitations: first, local memory is internally stored

in device registers, is hence very fast, but also scarse. When the maximum number of device registers is

exceeded, global memory is used instead (which has a much larger memory access latency).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 38

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

2. shared memory : this type of memory is shared across threads, and allocated using the functions shared and

shared_zeros. Its usage is discussed in section 2.4.4.

3. global memory : this type of memory is used for storing vectors and matrices with either large dimensions or

dimensions that cannot be determined at compile-time. Global memory is also used for dynamically allocated

objects (see section §8.3). For example:

function [] = __kernel__ my_kernel (X : mat, pos : ivec2)

% X[pos] is stored in global memory

endfunction

X = ones(4096,4096)

parallel_do(size(X), my_kernel)

Here, X is allocated outside a kernel function. The values of X, in total 4×4096×4096 bytes (in case of 32-bit

floating point), are stored automatically in global memory in a linear way. The following formula is used for

translating the 3D index to a linear index:

index(dim1,dim2,dim3) = (dim1Ndims2 + dim2) Ndims3 + dim3

The ind2pos(size, index) function performs exactly this calculation. Global memory can reside either

in CPU memory, GPU memory or both. When calling a kernel function using parallel_do in the GPU

computation engine, the global memory will automatically be transferred to the GPU. Because the maximum

amount of local memory and shared memory that can be used is limited by the hardware (e.g., not more than

48K), global memory is the only way to pass large amounts of data to a kernel function. The only premise

is: a kernel/device function cannot allocate global memory, the memory should best be allocated in advance

and passed to the function.

In some cases, a Quasar program may run out of global GPU memory. In that case, Quasar will automatically

transfer a non-frequently used memory buffer back to the CPU. This memory buffer can be later transferred

back to the GPU. By this technique, Quasar programs can use all the available memory in the system (both

CPU and GPU).

4. texture memory : texture memory is read-only global memory that is internally optimized for spatial access

patterns (whereas the global memory is more optimal for linear accesses). In particular, the data layout is

optimized for texture sampling using nearest neighbor interpolation or linear interpolation. CUDA uses space

filling curves5 for optimizing the data layout. See section 9.3 for more information.

Finally, it is important to mention that local memory should be scarcely used (or at least: with care), because for

the GPU, the local memory is mapped directly onto the device registers. In CUDA, the total size of the device

registers is 32K for compute capability 2.0 and 64K for compute capability 64K. However, the device registers are

shared across all computing threads: hence, when invoking 512 threads in parallel, the total amount of local memory

available to a kernel/device function is respectively 64 bytes and 128 bytes! If more registers are used, the kernel

will execute, but global memory is used instead (called register spilling). To avoid performance impact, the Quasar

runtime decreases the number of threads being spawned. The maximum number of threads that a given kernel

function uses, can be determined using the function prod(max_block_size(my_kernel)). Also see section 2.4.4

for more information.

5http://en.wikipedia.org/wiki/Space-filling_curve

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 39

http://en.wikipedia.org/wiki/Space-filling_curve
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

2.4.4 Advanced usage: shared memory and synchronization

For this section, a basic familiarity with the GPU architecture is required. Internally, chunks of data are processed

in blocks, as follows:

pos = [m,n,p]

blkpos = mod(pos, blkdim)

blkidx = floor(pos/blkdim)

blkcnt = ceil(size(y)./blkdim)

Within one block, a kernel function can access data from kernel functions running in parallel on this block. This is

very useful for implementing some special parallel algorithms, such as parallel sum, parallel sort, spatially recursive

filters etc. However, read/write operations can interfere (data races), so special care is needed.

Advanced usage consists of 1) using thread synchronization, 2) using shared memory, 3) dealing with data races.

Thread Synchronization The number of threads that run in parallel over one block can be calculated using

prod(blkdim), i.e., the product of the block dimensions. Sometimes, it is necessary that each threads wait until

a given operation is completed, by means of a thread barrier. All threads (within one block!) then wait until

completion of the operation. In Quasar, this is done using the syncthreads keyword:

function [] = __kernel__ my_kernel (y : mat, z : mat, pos : ivec2, idx : ivec2)

y[pos] = 10*idx

syncthreads % all threads wait here until the above operation has been completed.

z[pos] = y[pos]*2

endfunction

It is important to mention that the thread synchronization is performed on a block level, rather than on the full grid.

In the above example, when the syncthreads is first encountered, only values y[pos] with pos∈[0..blkdim[0]-1]
× [0..blkdim[1]-1] will have been computed, and not the complete matrix y!

Finally, the correct usage of syncthreads is that all threads effectively meet the barrier. It is for example not

allowed to put a synchronization barrier inside a conditional if...else... clause, unless it is sure that each

thread encounters the same number of barriers while running the kernel function. syncthreads may also have

a parameter to indicate the synchronization granularity, for example syncthreads(block), syncthreads(warp),

syncthreads(grid), syncthreads(host). For more details, see section §9.8.1.

Remark : note that syncthreads does not ensure that global memory writes performed by the block are completed

and can be seen by other threads. If this is required, consider using memfence (see section 9.8.3).

Shared Memory The GPU has several memory types (global memory, texture memory, shared memory, registers

etc.). Therefore, to achieve the best performance it is best to use the right memory type for each task. Global

memory is used by default and registers are used for local calculations within kernel/device functions. Shared

memory is visible to all threads of a kernel function within one block and can be allocated using the function

shared(.) or shared_zeros(.) from kernel functions. It’s usage is as follows:

var1 = shared(dim); % vector

var2 = shared(dim1,dim2); % matrix

var3 = shared(dim1,dim2,dim3); % cube

var4 = shared_zeros(dim); % vector initialized with 0's
var5 = shared_zeros(dim1,dim2); % matrix initialized with 0's

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 40

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

var6 = shared_zeros(dim1,dim2,dim3); % cube initialized with 0's

var7 = shared[uint8](dims) % generic memory allocation

var8 = shared_zeros[uint64](dims)

% generic memory allocation initialized with 0's

syncthreads % REQUIRED in case of shared_zeros!!!

Shared memory is visible and shared within one block. That means that, when going to another block (e.g. when

blkidx changes), the content of the shared memory cannot be relied on. Use shared_zeros only when you want

to initialize the memory with zeros. The shared memory allocated with shared is not initialized (like in C/C++).

This is often faster.

Important: one or multiple shared_zeros calls always need to be followed by a syncthreads statement (as shown

in the example below). This is because the memory initialization by shared_zeros is performed in parallel. Hence,

when all threads randomly start using the allocated memory it is necessary to wait until the zero initialization

operation has fully been completed. In fact, the (internal) implementation of shared_zeros is as follows:

function [] = __kernel__ shared_mem_example(blkpos : ivec3, blkdim : ivec3)

A = shared(100) % One vector of 100 elements

% Compute the index of the current thread

threadId = (blkpos[0] * blkdim[1] + blkpos[1]) * blkdim[2] + blkpos[0]

nThreads = prod(blkdim) % Number of threads within one block

for i=threadId..nThreads..numel(A)-1 % Parallel initialization

A[i] = 0.0

endfor

syncthreads % Make sure all threads have finished before continuing!

% Is equivalent to

B = shared_zeros(100)

syncthreads % Make sure all threads have finished before continuing!

endfunction

There are however two caveats when using shared memory:

1. For the CUDA computation engine, the amount of shared memory per block is typically 32 KB. On CUDA

architectures, shared memory is on-chip and much faster than other off-chip memory. Consequently the

amount of shared memory is limited. Taking into account that a (single precision) floating point value takes

4 bytes, the maximum dimensions of a square block of shared memory that you can allocate are 64× 64. The

more shared memory a kernel uses, the less blocks that can be executed in parallel on the GPU.

2. To obtain maximal performance benefits when using shared memory, it is important to make sure that the

compiler can determine statically the amount of memory that will be used by the kernel function. If not, the

compiler will assume that the kernel function will take all of the available shared memory on the GPU, which

prevents the hardware from processing multiple blocks in parallel. For example, if you request:

x = shared(20,3,6)

the compiler will reserve 20×3×6×4 bytes = 1440 bytes for the kernel function. However, often the arguments

of the function shared are non-constant. In this case you can use assertions (see further in 5):

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 41

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

assert(M<8 && N<20 && K<4)

x = shared(M,N,K)

With this assertion the compiler is able to infer the amount of required shared memory. In this case: 8×20×4×4

bytes = 2560 bytes. The compiler then gives the following message:

Information: Calculated an upper bound for the amount of shared memory: 2560 bytes

Due to these restrictions, shared memory should be used in a “smart” way and with care.

Dealing with data races To solve data races, one can either use atomic operations (e.g., +=, -=,/=,*=,^=, ...).

Atomic operations are serialized, so the end result of the computation will always be correct. Atomic operations

are often used in combination with synchronization barriers (see above). For example:

function [] = __kernel__ my_kernel(x : mat, y : vec, blkpos : ivec2, blkdim : ivec2)

bins = zeros(blkdim) % allocates shared memory

nblocks = (size(x)+blkdim-1)./blkdim

% step 1 - do some computations

val = 0.0

for m=0..nblocks[0]-1

for n=0..nblocks[1]-1

val += x[blkpos + [m,n] .* blkdim]

endfor

endfor

bins[blkpos] = val

% step 2 - synchronize all threads using this barrier

syncthreads

% Now it is safe to read from the variable bins

endfunction

Hint : only use atomic operations when necessary. If there is no possibility for a data race, it is more efficient to use

non-atomic counterparts (e.g. y[pos] = y[pos] + 1). For GPUs, atomic operations in shared memory are also

more efficient than atomic operations in global memory. Often, atomic operations can be avoided using the parallel

reduction algorithm (see section §8.4).

Warp size The warp size is the number of threads in a warp, a subdivision that is used in GPU hardware

implementation for memory coalescing and instruction dispatch. The warp size is important for branching: branch

divergence occurs when not all threads within a warp follow the same execution path; this should be avoided as

much as possible. For recent GPUs, the warp size is typically 32. The warp size is also important to know when

accessing constant memory (see section §9.1): constant memory works the most efficient when all threads within

one warp access the same memory location at the same time.

In Quasar, the warpsize can be requested using the special kernel function parameter warpsize.

Specifying the GPU block size By default, the GPU block size is determined automatically by the runtime

system. For situations in which explicit control of the block size is required, it is also possible to manually specify

the block size (blkdim) using the function parallel_do. For example:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 42

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

sz = max_block_size(my_kernel, my_block_size)

parallel_do([dims,sz],...,my_kernel)

where dims and sz are both vectors of equal length. my_block_size then typically depends on the amount of

shared memory you want to use within the kernel. The built-in function max_block_size computes the maximally

allowed block size for the given kernel function. Note that

• For the CUDA computation engine, the maximum block size is limited by the maximum number of threads

per block. For CUDA compute capability 2.0, we should have that the maximum number of elements ≤ 1024.

In practice, this number is often even lower, due to the resources used by the kernel (registers, shared memory,

...).

• For optimal performance, the number of elements in each block should be a multiple of the warp size (typically

32). To optimize the memory access pattern it might be even desirable to set the block width as a multiple of

32.

• For the CPU computation engine, the maximum block size is unlimited, unless synchronization (syncthreads)

is used. In this case, the block size is limited depending on the number of multi-processors in the system.

• Performance is not necessarily proportional to the number of threads per block. In some cases, the optimal

launch configuration has a block size that is as small as 64 or 128.

The above behavior is handled transparently by the function max_block_size(.). Hence one should always call

max_block_size, to determine the maximal block size for a given kernel function.

Warning : the specification of the block size (especially without using max_block_size) should be done with

care, because when the block size is too small, the performance of the kernel function may be severly impacted.

Additionally, the code may fail or work less optimally on future computation devices.

Block size not specified: what happens? In case the block size is not specified, it can be accessed from the

kernel function through blkdim (this parameter should then be added to the argument list). The Quasar runtime

system computes the block size that is estimated to be the most optimal for the given kernel, according to some

heuristics. Quite often, this will be 16 × 32. Note that the block size is always a divisor of the dimensions dims.

When necessary, the block size for a given kernel function can be retrieved programmatically using opt_block_size:

sz = opt_block_size(my_kernel)

Note that opt_block_size uses an internal optimization method for determining the best possible block size for

the given data dimensions, taking into account the resources used by the kernel function (e.g., registers, shared

memory, ...). Furthermore, it always returns a block size that the hardware can handle.

Large vector/matrix dimensions that are not a power/multiple of 2. It is best to specify dimensions to

parallel_do that are a multiple of the maximal block size (e.g. 16 × 32 or 32 × 16). GPU computation engines

best work with input data dimensions that are a multiple of (a power of) two. In the following example, this is not

the case:

function [] = __kernel__ my_kernel(y : vec'unchecked, pos : int)

y[pos] = 1.0

endfunction

y = zeros(65535)

parallel_do(size(y),y,my_kernel) % errorInvalidValue

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 43

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

2.4. WRITING PARALLEL CODE USING KERNEL FUNCTIONS Chapter 2

To ensure proper functioning of the program, the runtime system internally pads the input dimensions to be a

multiple of two, as follows:

function [] = __kernel__ my_kernel(y : vec'unchecked, pos : int)

if pos >= 0 && pos < numel(y)

y[pos] = 1.0

endif

endfunction

y = zeros(65535)

pad = x -> ceil(x / BLOCK_SIZE) * BLOCK_SIZE % Block size is determined automatically

parallel_do(pad(numel(y)),y,my_kernel) % Success!

Note that this is performed completely transparently to the user, but comes at a slight performance cost: 1) the

position checking if pos >= 0 && pos < numel(y), which is performed by all threads and 2) some threads (the

ones for which the if-test fails) may be “inactive” by this measure.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 44

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 3

Chapter

3

Type system

3.1 Type definitions

Although variable types in Quasar often do not need to be specified (the types are either determined at compile time

by type inference, or at runtime), it is always recommended to use strong typing. Strong typing has the immediate

advantage that the compiler can generate some more optimal code for the typed variables. In this section, a more

detailed overview of the Quasar type system is provided.

The following type categories exist in Quasar:

1. Class #1 : Primitive types (scalar, cscalar, int, intx,uintx,string)

2. Class #2 : vector/matrix/cube types (vec, mat, cube, cube{:})

3. Class #3 : Classes / user-defined types (class)

4. Class #4 : Function types ([?? -> ??], [(??, ??) -> (??, ??)], [__device__ scalar -> scalar],

[__kernel__ () -> ()] ...)

5. Class #5 : Type references (type).

Class #2 types are also container types and can embed all other types. For example, mat[scalar] represents a

matrix type for scalar numbers, cube[[??->??]] represents a 3D array of functions with one input argument and

one output argument. The parameters can be nested: cube[cube[^T]] denotes a 3D array of 3D arrays of pointers

to objects of type T. By default, the default type arguments of vec, mat and cube is scalar. The ^-prefix cannot

be used on vectors/matrices: these objects are already passed by reference. In fact, ^ is only used for classes.

There also some derived types, which can be expressed directly in terms of the above types. Note that the following

definitions are already defined as shorthand, so you do not need to define them yourself:

% Complex-valued matrices

type cvec : vec[cscalar]

type cmat : mat[cscalar]

type ccube : cube[cscalar]

% Integer matrices

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 45

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

3.2. VARIABLE CONSTRUCTION Chapter 3

type ivec : vec[int]

type imat : mat[int]

type icube : cube[int]

% By default: the argument type of vec[.],mat[.],cube[.] is scalar:

type vec : vec[scalar]

type mat : mat[scalar]

type cube : cube[scalar]

% Cell matrices

type cellvec : vec[??]

type cellmat : mat[??]

type cellcube : cube[??]

Class #3 types are passed by value. It is possible to declare pointers to these types (e.g. in order to pass them

by reference). For this purpose, Pascal-style pointers can by used (e.g. ^T). There is only one level of indirection

possible (in contrast to C/C++) and also pointer values need to be explicitly initialized. It is not possible to declare

pointers to types other than classes.

Class #2 types can contain parameters of class #3: for example mat[T], cube[T], vec[^T]. Especially vectors/ma-

trices/cubes of UDTs containing only primitive types are very efficient, because they use a sequential layout scheme

(i.e. they are stored contiguously in memory, with appropriate alignment depending on the machine/GPU).

Recall that cell matrix types containing unspecified sub-types ??, such as vec[vec[??]], mat[??], cannot be passed

to kernel or device functions. This is mainly for performance reasons: when the types of all variables are specified,

the compiler can generate more optimal code. On the other hand, not specifying types can be an advantage for

rapid prototyping.

3.2 Variable construction

The construction of variables of a specified type depends on the type class:

1. Class #1: variables of class #1 are constructed using symbols: a number containing a decimal point (e.g.

1.4e3) will have type scalar. When the symbol contains the imaginary unit (1i or 1j) it will be a complex

scalar cscalar (e.g. 1+3i). Strings (string) can be defined using “quotation marks”. Note that it is not

possible currently to construct variable of type intx or uintx : these types are mainly intended to be used

for storage, and because for most computation engines default integer type (int) offer a better performance,

the types cannot be used for calculations.

2. Class #2: variables of vector, matrix, cube types can be created using the [] constructor. The type of the

result depends of the types of the operands (which should be the same for all operands, otherwise a compiler

error is generated). For example, [1,2,3,4] has type ivec, [[1.0,2.0],[3.0,4.0]] has type mat. If a,b,c

have a user-defined type T, then [a,b,c] will have type vec[T]. Similarly [[a],[b]] has type mat[T]. Real-

valued vectors, cubes and matrices of arbitrary dimenions can be constructed using the functions uninit,

zeros, and ones:

A = uninit(2)

B = zeros(3,4)

C = ones(1,2,3)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 46

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

3.3. SIZE CONSTRAINTS Chapter 3

Here, the function uninit allocates a vector of length 2, without initializing the data. zeros creates a matrix

of 3 rows and 4 columns, and initializes each element to 0. ones creates a cube of dimensions 1 × 2 × 3 and

initializes each element to 1. Complex-valued versions can be obtained using the function complex, combined

with uninit, zeros or ones:

A = complex(uninit(2))

B = complex(zeros(3,4))

C = complex(ones(1,2,3))

Variables of parametric vectors, matrices and cubes can also be constructed, however they require a type alias:

type my_cell : mat[cube]

A = my_cell(1,2)

A[0,0] = uninit(4,2)

A[0,1] = uninit(4,2)

3. Class #3: user-defined types are constructed either using the type name followed by (), or by explicitly

assigning values to all fields, as shown below:

type point : class

x : scalar

y : scalar

endtype

p = point()

q = point(x:=1,y:=2)

4. Class #4: variables of these types are created using either a lambda expression, or a function definition (see

section 4.6).

5. Class #5: use the type keyword to define types.

3.3 Size constraints

Often, more efficient code can be generated when the array (e.g., vector, matrix, cube, ...) dimensions are known

at compile-time. For example, when dimensions are known, certain types of for-loops can be efficiently parallelized,

without using dynamic kernel memory. For this purpose, array types can be annotated with their dimensions, such

as in the following table:

Data type Example Purpose

vecX or vec(X) vec4 A vector of length X

matXxY or mat(X,Y) mat2x3 A matrix of size X × Y
cubeXxYxW or cube(X,Y,W) cube2x2x3 A cube of size X × Y ×W

cubeXxYxWxZ or cube(X,Y,W,Z) cube2x2x2x2 A hypercube of size X × Y ×W × Z

There are two equivalent ways to annotate the size: either vecX or vec(X). The former notation can only be used

when X (or Y or Z) are numeric. A type parameter can be used as well as long as the dimensions can be determined

statically (e.g., as part of a generic function, see section §6.7).

There are several advantages of annotating types with size constraints:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 47

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

3.3. SIZE CONSTRAINTS Chapter 3

• A known dimension becomes a constant rather than a parameter that must be passed to a kernel/device

function. Constants can be propagated and simplify indexing expressions.

• By specifying the array dimensions through the type, the compiler and runtime can automatically check the

dimensions. Out-of-bounds array accesses and dimensioning problems can easily be detected at compile-time.

• Additionally, the code generator may map the types onto stack memory or even registers, which also avoids

dynamic allocation overhead.

• In generic functions, generic size parameters allows coupling arguments of different matrices. For example:

function C = generic_matrix_vector_mult[M,N](A : mat(M,N), B : vec(N))
...

endfunction

Here, the size constraints will be checked by the compiler (and/or runtime) and an error will be reported when

the dimensions of the input matrix/vector are not correct.

Variables of fixed-size array types are always passed by reference, just like array types without dimension constraint.

Hence, the dimension constraint acts as a contract for the type, but omitting the contract will not change the program

behavior.

The type inference will automatically determine that the type of an expression zeros(2,2), [[0,1],[1,0]] is

mat(2,2).

Also, incompatibilities in matrix/vector operations can be detected at compile-time in some cases, for example:

y = [1,2,3] * eye(4)

The use of array size constraints is currently the best approach to avoid the use of dynamic kernel memory (which

incurs a performance penalty), see section §8.3.

When array dimensions are only partially known, this can be annotated using :, as in cube(:,:,3). This is useful

for example to indicate the number of color channels of an image. Both the width and height are then unspecified

(this may depend on an input file). To make code more easily extendible and also to facilitate compiler analysis

(for loop parallelization, type inference), partially parametrized array types can be used.

Example:

img : cube(:,:,3) = imread("lena_big.tif")

indicates that A is a cube with three dimensions, for which the first two dimensions have unspecified length (:) and

the last dimension has length 3. When a for-loop is written over the third dimension, either explicitly or implicitly

via matrix slices:

img[m,n,:]

the compiler can determine the length numel(img[m,n,:])==3 so that the vector type vec3 can be assigned.

Implementation note: for arrays with number of elements <= 64, the stack memory (or registers) will be used,

while for >64, the arrays will be allocated in dynamic kernel memory, which has some computational overhead (see

section §8.3). To maximize performance, it is best to keep the arrays short. In future versions of Quasar, the

constant 64 may be increased or be made more adaptable.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 48

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

3.4. DIMENSION CONSTRAINTS Chapter 3

3.4 Dimension constraints

In some cases it is useful to indicate the dimensionality of an array type directly through a parameter. This can be

achieved using dimension constraints, using the notation cube{n}. The following table gives an overview of some

common types:

Data type Equivalent to Meaning

cube{1} vec vector

cube{2} mat matrix

cube{3} cube 3 dimensional array (cube)

cube{4} - 4 dimensional array (hypercube)

cube{N} - N dimensional array (N=constant)

cube{:} - Infinite dimensional array

The type cube{:} is useful in function definitions. It indicates that the function accepts arrays of arbitrary dimension.

It is currently not possible to construct infinite dimensional arrays (in fact the maximum dimensionality is currently

set internally to 16, which should be enough for most practical purposes).

Dimension-parametrized arrays such as cube{N} are useful for describing algorithms that do not depend on a

certain dimensionality of the input data. Because the dimensionality is known at compile-time, the compiler can

still generate efficient indexing code. For more information, see section §6.8.

3.5 Cell array types

Cell arrays are structured but unnamed array types. In Quasar, each element of an array can have a different type.

For example, a 2× 2 cell matrix type with vectors in the first row and scalar values in the second row is given by:

mat[{{vec, vec},

{scalar, scalar}}]

Cell array types (CATs) can therefore be seen as a generalization of tuple types to multiple dimensions. Arbitrary

numbers of dimensions can be defined by nesting {}. CATs mostly occur during type inference and are not often used

in user-code. In particular, CATs allow the type inference to succeed (and correspondingly efficient parallelization

and other optimizations) in places where inhomogeneous data is stored in a cell matrix.

As a multidimensional generalization of tuples, cell array types can also be used to define lambda expressions (see

section 4.6) with multiple return values:

get_string_and_value : [scalar -> vec[{string,scalar}]] =

value -> {"String", value}

[str, val] = get_string_and_value(1.234)

Note that the right handed side {”String”, value} constructs a cell vector.

3.6 Type constructors and the typename function

By calling the type as a function, for many types such as scalars and vectors/matrices, ..., an instance of the type

can be constructed. This is particularly useful for generic code (see section §6) but also for constructing values of

types for which no default creation function exists (for example zeros can be used to create a vector value of type

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 49

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

3.7. TYPE CLASSES Chapter 3

vec[scalar], but the function cannot create an integer vector of type vec[int]). Below are a number of examples

of type constructors:

integer_vec = vec[int](200) % integer vector of length 200

uint8_vec4 = vec[uint8](4) % a 32-bit value containing four 8-bit unsigned integers

integer_val = typename(scalar)(1) % a scalar with value 1

typed_cell = typename(mat[{{vec,vec},{scalar,scalar}}])(2,2) % typed cell matrix

hyper_cube = typename(cube{4}[int16])(2,2,2,2) % 4-D array of int16

half_vec = typename(vec[scalar'half])(4) % half precision float vector of length 4

Quasar types are parsed using a type parser which is separate from the main parser. Therefore, with exception of

the type annotation operator :, type names cannot be directly placed inside regular statements. As an alternative

Quasar now provides the builtin function typename, so that type names can be given inline and so that instances

of these types can be constructed more easily (in the past a type alias was required for this purpose).

For example, typename(vec[scalar’half])(4) creates a half-precision vector value of length 4. This of practical

relevance for SIMD processing (see further in section §12).

3.7 Type classes

Type classes allow the type range of the input parameters to be narrowed. For example:

[int|cube]

denotes a type for a variable that can either be int or cube. The compiler will always attempt to simplify the

type class definition. For example, [int’const|int] becomes int, because the const modifier does not make much

sense here.

When such simplifications are not possible, the variables of these types are automatically polymorphic (see sec-

tion 4.1). Nevertheless, type classes allow restricting the possible types that a function parameter can have (which

is better than not specifying any type at all!), allowing the compiler to still proceed with the type inference. For

example:

function y = diag(x : [mat|cmat])

This construction only allows variables of the type ‘mat’ and ‘cmat’ to be passed to the function. This is useful

when it is already known in advance which types are relevant (in this case a real-valued or complex-valued matrix).

Equivalently, type class aliases can be defined. The type:

type AllInt : [int|int8|int16|int32|uint8|uint32|uint64]

groups all integer types. Several functions of the Quasar standard library use type classes to allow the functions to

be applicable to a wide range of input types.

3.8 Class / user defined type (UDT) definitions

User-defined types are used for storing structured data. Although Quasar currently does not support class member

functions, inheritance or interfaces, there are some ways to simulate this behavior and obtain the same functionality.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 50

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

3.9. FUNCTION TYPES Chapter 3

Class member functions To define class member functions, the special reduction keyword (see section 4.9)

can be used. First, a general function should be defined using a lambda expression or function definition (e.g.

point_distance in the example below). Next, a reduction can be used to redirect the member function p.distanceto

to the point_distance function.

type point : class

x : scalar

y : scalar

endtype

reduction (p : point, q : point) -> p.distanceto(q) = point_distance(p, q)

p = point(x:=4, y:=5);

q = point(x:=2, y:=1)

print p.distanceto(q)

Interfaces Defining an interface can be achieved by defining a user-defined class of function variables:

type my_interface : class

times2_function : [scalar -> scalar]

sum_function : [?? -> ??]

endtype

obj = my_interface(

times2_function := (x : scalar) -> 2*x,

sum_function := (x) -> sum(x)

)

print obj.times2_function(2)

print obj.sum_function([1,2,3])

Interface initialization requires all fields to be set. This enforces that are interface methods are implemented.

3.9 Function types

Function types have the following form:

[__modifier__ (inArgType1,...,inArgTypeN)->(outArgType1,...,outArgTypeN)]

where modifier is either __kernel__ (indicating a kernel function type), __device__ (indicating a device function

type) or entirely omitted (host function types). Below is an example of a function taking a matrix and a vector,

with no output parameters:

[(mat,vec)->()]

A device function with no input arguments and one output argument (with unspecified type) has the following type:

[__device__()->??]

A variadic function taking a cube followed by an arbitrary number of scalar values can have the type:

[(cube,...scalar)->()]

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 51

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

3.10. ENUMERATIONS Chapter 3

Only kernel/device function types can be passed to kernel/device functions. If function parameters have a function

type set, the compiler and/or runtime system will check the function variable that is passed, and generate an error

if there is a type mismatch.

3.10 Enumerations

Enumeration types, which contain an ordering of named values, are defined as in the following example:

type color : enum

Red

Green

Blue = 2

Cyan

Magenta

Yellow

endtype

Enumerations are treated as integer types. To each named value (key) an integer value is assigned, that starts

counting from 0, unless a value is explicitly assigned (like 2 in the above example). The individual values can be

accessed with the dot-syntax:

my_color = color.Magenta

One exception are matches, which do not require the enum class name to be specified, because it is clear from the

context:

match a with

| Red -> print ("The color is red")

| Green -> print ("The color is green")

| _ -> print ("Unknown color")

endmatch

3.11 Passed by reference / Passed by value

The semantics of whether a given variable is passed to a function by reference or by value, generally depends on the

type of the variable. Scalar types are passed by value, while vectors, matrices and cubes are passed by reference. In

the first case (pass by value), a function can modify the variable locally, but the effects of the change are not visible

outside the function. In the second case (pass by reference), the function can modify the vector or matrix elements

of the variable, and these modifications are visible to the calling function.1 This way, some run-time overhead

involved with copying matrices can be avoided.

An overview of the variable passing conventions is given in table 3.1. Some dynamic types (string, object, type)

are not supported by kernel/device functions, therefore the table lists not applicable (N/A) for these types.

3.12 Constants

To enforce that a by reference variable cannot be modified by the function, it is possible to add the ’const modifier

to the type definition (see section 16.6), as in the following example:

1This is in contrast to some other programming languages, like MATLAB.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 52

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

3.12. CONSTANTS Chapter 3

Table 3.1: Overview of the variable passing conventions.

Type host function device function kernel function device function
(host call) (device call)

scalar, cscalar value value value value
vecx , ivecx , cvecx reference reference reference reference

vec, mat, cube reference reference reference reference
string reference reference N/A N/A
function reference reference reference reference
class value value value value
^class reference reference reference reference

object, type reference reference N/A N/A
?? reference* reference* N/A N/A

*: unless the underlying value is scalar

function [] = compute(A : mat'const)
...

endfunction

Explicitly declaring ’const is mostly useful for preventing accidental writes to the A matrix. For other purposes,

it is not needed to manually annotate types with the ’const modifier because the compiler will add this modifier

automatically.

In general, constant variable types have the following benefits:

• By using constant values, redundant memory transfer operations between the different computation devices

can be avoided.

• Constant values may propagate to functions, avoiding use of closures and function pointers, leading to a better

execution performance.

• Quasar may use GPU features (e.g., non-coherent texture cache) to accelerate access to constant memory.

• Constant values may be used as size and dimension parameters of types. For example cube{N}.

Below an example is given of such constant value propagation. Here, by declaring the variable half_wnd_size as

a constant, the value of half_wnd_size can be substituted into the two for-loops (with iterators k and l), leading

to additional optimizations such as loop unrolling.

half_wnd_size : 'const = 4

function y = mean_filter(x : mat'circular)

y = zeros(size(x))

tmp : mat'circular = zeros(size(x))

for m=0..size(y,0)-1

for n=0..size(y,1)-1

sum = 0.0

for k=-half_wnd_size..half_wnd_size

sum += x[m,n+k]

endfor

tmp[m,n] = sum

endfor

endfor

for m=0..size(y,0)-1

for n=0..size(y,1)-1

sum = 0.0

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 53

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

3.12. CONSTANTS Chapter 3

for l=-half_wnd_size..half_wnd_size

sum += tmp[m+l,n]

endfor

y[m,n] = sum

endfor

endfor

endfunction

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 54

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 4

Chapter

4

Programming concepts

This section covers some extra advanced concepts that can help in writing efficient and easily readable Quasar

programs.

4.1 Polymorphic variables

In Quasar, the variable data types are usually deduced from the context. The data type of a variable usually

does not change. Polymorphic variables are variables for which the data type changes throughout the program. A

common example is the calculation of the sum of a set of matrices:

v = vec[cube](10)

a = 0.0

for k=0..numel(v)-1

a += v[k]

endfor

Here, the type of a is initially scalar, however, inside the for-loop the type becomes cube (because the sum

of variables of type scalar and cube has type cube). Polymorphic variables are particularly useful for rapid

prototyping. Note that for maximal efficiency, polymorphic variables should rather be avoided. When the compiler

knows that a variable is not-polymorphic, type-static code can often be generated (i.e. as if you have declared the

types of all the variables). The above example can be replaced by:

v = vec[cube](10)

a = v[0]

for k=1..numel(v)-1

a += v[k]

endfor

Another side issue of polymorphic variables is that the automatic loop parallelizer may have more difficulties

making assumptions with respect to the type of the variable at a given time. Therefore, the code fragment with the

polymorphic variable may not be parallelized/serialized (even though a warning will be generated by the compiler).

Of course, it is up to the programmer to decide whether a variable is allowed to be polymorphic or not.

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 55

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.2. CLOSURES Chapter 4

However, when a variable is assigned with values of different array types (for example, with different sizes, different

dimensionalities), the type of the variable will be widened as follows:

• The dimenionality of the resulting type is the maximum of the dimensionality of the different array types

((vec, mat) -> mat)

• When arrays have different size constraints (see section §3.3), the corresponding size constraint for the specified

dimension will be dropped ((vec(4), vec(8) -> vec, (mat(2,2), mat(3,2)) -> mat(:,2)).

Type widening allows the compiler to statically determine the type of the variable.

4.2 Closures

A closure allows a function or lambda expression to access those non-local variables even when invoked outside of

its immediate scope. In Quasar, its immediate use lies in the pre-computation of certain data, that is then used

repeatedly, for example in an iterative method. Consider the following example:

function f : [cube->cube] = filter(name)

match name with

| "Laplacian" ->

mask = [[0,-1,0],[-1,4,-1],[0,-1,0]]

f = x -> imfilter(x, mask)

| "Gaussian" ->
...

endmatch

endfunction

im = imread("image.tif")

y = filter("Laplacian")(im)

What happens: the filter mask“mask” is pre-computed inside the function filter, but is seen as a non-local variable

to the lambda expression f = x -> imfilter(x, mask). Now, when this lambda expression is initialized, it stores

a reference to the data of mask with it. The lambda expression is then returned as an output of the function filter,

which then appears as a generic function of type cube -> cube. This way, even when the function filter is called

repeatedly, mask only needs to be initialized once.

An even more interesting usage pattern, is to use closure variables inside kernel functions:

function y : mat = gamma_correction(x : mat, gamma : scalar)

function [] = __kernel__ my_kernel(pos : ivec2)

y[pos] = x[pos] ^ gamma

endfunction

y = uninit(size(x))

parallel_do(size(x), my_kernel)

endfunction

Here, the kernel function my_kernel can access the variables x, y, gamma defined in the outer scope! The above

function can be written more compactly using a lambda expression:

function y : mat = gamma_correction(x : mat, gamma : scalar)

y = uninit(size(x))

parallel_do(size(x), __kernel__ (pos : ivec2) -> y[pos] = x[pos]^gamma)

endfunction

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 56

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.2. CLOSURES Chapter 4

Device functions also support closure variables. Practically, this means that they can have a memory :

gamma = 2.4

lut = ((0..255)/255).^gamma*255

gamma_correction = __device__ (x : scalar) -> lut[x]

function y : cube = pointwise_op(x : cube, fn : [__device__ scalar->scalar])

y = uninit(size(x))

parallel_do(size(x), __kernel__ (pos : ivec3) -> y[pos] = fn(x[pos]))

endfunction

im=imread("lena_big.tif")

y = pointwise_op(im, gamma_correction)

imshow(y)

Here, the lookup table lut is initialized, the gamma_correction function has type [__device__ scalar->scalar],

and performs the gamma correction using the specified lookup table. The advantage of this technique, is that the

function lut does not need to be passed separately to the function pointwise_op, which makes is somewhat simpler

to write generic code.

Correspondingly, a function definition defines the signature of a single function (which is similar to an interface

with one member function in other programming languages such as Java/C++):

type binary_function : [__device__ (scalar, scalar) -> scalar]

The implementation can then still use internal or private variables, defined using function closures.

Closure variables are read-only An important remark: to avoid side effects, closure variables in Quasar are

read-only! When attempts are made to change the value of a closure variable, a compiler error will be raised. The

reason is illustrated in the following example:

a = 1

function [] = __device__ accumulate(x : scalar)

a += x % COMPILER ERROR: a is READ-ONLY

a = a + x % COMPILER WARNING: a is a "new" copy,

changes are only visible locally

endfunction

accumulate(4)

print a % The result is 1

In this example, the variable a, which is defined outside the function accumulate, is changed using the operator +=,

every time the function accumulate is called. This is not desirable, as this side effect can be very easily overlooked

by the programmer: firstly, all variable definitions in Quasar are implicit, making it even more difficult to detect

where the variable is actually declared. Secondly, the function accumulate may be passed as a return value to

another function, and then the variable a may not exist anymore (apart from its reference).

The second syntax (a = a + x), however, is legal, but will generate a compiler warning, suggesting the programmer

to choose another name for the variable a. In this case, the statement has to be interpreted as ainner
∆
= aouter + x,

where ’
∆
=’ defines a variable declaration, ainner is the local variable of the function, and aouter refers to the non-local

variable. This way, changes to a only happen locally, without causing side effects to the outer context.

Another benefit of the constant-ness of closure variables for GPU computation devices, is that the closure variable

values needs to be transferred to the device memory, but not back!

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 57

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.3. DEVICE FUNCTIONS, KERNEL FUNCTIONS, HOST FUNCTIONS Chapter 4

Closure variables are bound at the function definition In contrary to some other programming languages,

closure variables are bound at the moment the function/lambda expression is defined. This means that their values

are stored within the function variable. Therefore, the following example will result in the value 18 being printed

to the console:

A = ones(4,4)

D = __device__ (x : scalar) -> sum(A) + x % A is bound to D

A = ones(2,2)

print D(0) % prints 16

Note however, that vectors and matrices are passed by reference, therefore, modifying the vector and matrix elements

of the bound closure variables will be visible by the device function.

4.3 Device functions, kernel functions, host functions

As already mentioned in section 2.4, there are three types of functions in Quasar: device functions, kernel functions

and host functions. There are strict rules about how functions of a different type can call each other:

• Both __kernel__ and __device__ functions are low-level functions, they are natively compiled for CPU

and/or GPU. This has the practical consequence that the functionality available for these functions is re-

stricted. It is for example not possible to load or save information inside kernel or device functions. On

the contrary, the print function is supported, but only for string, scalar, int, cscalar, vecX, ivecX and

cvecX datatypes.

• Host functions are high-level functions, typically they are interpreted (or Quasar EXE’s, compiled using the

just-in-time compiler).

• A kernel function is normally repeated for every element of a matrix. Kernel functions can only be called

using the parallel_do/serial_do functions.

• A device function can be called from host code or from other device/kernel functions.

• Kernel and device functions can call other kernel functions, through parallel_do/serial_do (nested paral-

lelism, see section §4.4).

The distinction between these three types of functions is necessary to allow GPU programming. Furthermore,

it provides a mechanism to balance the work between CPU/GPU. To find out whether the code will be run on

GPU/CPU, the following recipe can be used:

• Kernel functions are a candidate to run on the GPU. When the kernel function is sufficiently “heavy” (i.e.

data dimensions ≥ 1024, branches, thread synchronization), there is a high likelihood that the function will

be executed on the GPU.

• Device functions run on the GPU (when called from a kernel function that is launched on the GPU) or on

the CPU.

• Host functions run exclusively on the CPU.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 58

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.4. NESTED PARALLELISM Chapter 4

Device function
__device__

Kernel function
__kernel__

Host function

Low level

High level

Can call

Can call

Can call

(parallel_do

serial_do)

Can call

Can call

C
P

U
C

P
U

/G
P

U

Can call
(parallel_do

serial_do)

Can call

(parallel_do

serial_do)

Figure 4.1: Relationship between the different function types in Quasar.

4.4 Nested parallelism

__kernel__ and __device__ functions can also launch nested kernel functions using the parallel_do (and se-

rial_do) functions. The top-level host function may for example launch 30 threads (see figure 4.2), from which

every of these 30 threads spans again 12 threads (after some algorithm-specific initialization steps). There are

several advantages of this approach:

• More flexibility in expressing the algorithms

• The nested kernel functions are mapped onto CUDA dynamic parallelism on Kepler devices such as the Geforce

GTX 780, Geforce GTX Titan or newer.

• When a parallel_do is placed inside a __device__ function that is called directly from the host code (CPU

computation device), the parallel_do will be accelerated using OpenMP.

Notes:

• There is no guarantee that the CPU/GPU will effectively perform the nested operations in parallel. However,

future GPUs may be expected to become more efficient in handling parallelism on different levels.

• The setting “dynamic parallelism” needs to be enabled. By default, inner kernels are executed sequentially.

Limitations:

• Nested kernel functions may not use shared memory (they can access the shared memory through the calling

function however), texture memory, and they may also not use thread synchronization.

• Currently only one built-in parameter for the nested kernel functions is supported: pos (and not blkpos,

blkidx or blkdim).

In fact, when nesting parallel_do and serial_do and considering two levels of nesting, there are four possibilities:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 59

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.5. FUNCTION OVERLOADING Chapter 4

parallel_do

parallel_do

parallel_do

Host

function

Kernel function 1 Kernel function 2

Kernel function 3

Figure 4.2: Illustration of nested parallelism.

Outer operation Inner operation Result

serial_do serial_do Sequential execution on CPU

serial_do parallel_do Parallel execution on CPU via OpenMP

parallel_do serial_do Execution on GPU, inner kernel is executed sequentially

parallel_do parallel_do Execution on GPU, sequentially (default) or CUDA dynamic parallelism (when enabled)

4.5 Function overloading

To implement functions taking different argument with different types, the most simple approach is to check the

types of the function at runtime. Consider for example the following function that computes the Hermitian transpose

of a matrix:

function y = herm_transpose(x:[scalar|cscalar|mat|cmat])

if isscalar(x)

y = conj(x)

elseif isreal(x)

y = transpose(x)

elseif iscomplex(x)

y = conj(transpose(x))

endif

endfunction

Although this technique is legal in Quasar, it has two important disadvantages:

1. Type inference is difficult: the compiler cannot uniquely determine the type of the result of herm_transpose(x),

because the type depends on the type of x (and the conditions used in the if clauses). Instead, the compiler

will assume that the resulting type is unknown (‘??’). Hence, several optimizations (such as loop paralleliza-

tion) that apply to code blocks that make use of the result of herm_transpose(x), will be disabled.

2. Runtime checking of variable types creates some additional overhead, while in this case this could be handled

perfectly by the compiler.

For these reasons, Quasar supports function overloading. The above function could be implemented as follows:

function y = herm_transpose(x : cscalar)

y = conj(x)

endfunction

function y = herm_transpose(x : scalar)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 60

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.5. FUNCTION OVERLOADING Chapter 4

y = x

endfunction

function y = herm_transpose(x : mat)

y = transpose(x)

endfunction

function y = herm_transpose(x : cmat)

y = conj(transpose(x))

endfunction

In case none of the definitions apply, the compiler will generate an error stating that the function herm_transpose

is not defined for the given input variable types. The overload resolution (i.e. the method the compiler uses for

selecting the correct overload), follows the rules of the reduction resolution, which will be discussed in section 4.9.

Note that the function overloading has the following restrictions:

• all function overloads must reside within the same module.

• all function overloads must be defined at the global scope (i.e. not inside another functions).

• only host and device functions can be overloaded, not __kernel__ functions or lambda expressions.

• function overloads must differ in number of input arguments (or input argument types). Thereby, differences

in output arguments are ignored.

• it is not possible to obtain a function handle of an overloaded function. Internally, overloaded functions are

converted by the compiler to reductions (see section 4.9).

Finally, when the type of the input variables is not known to the compiler, the overload resolution will be performed

at runtime.

4.5.1 Device function overloading

Some functions, especially functions from the standard libraries, are often used in different circumstances:

1. within a host function, e.g., to process one single huge matrix

2. from a kernel/device function, where the function is to be executed with many threads in parallel.

One notable example is the svd (singular value decomposition) function: when called from a device function, svd

needs to be specialized for small matrices, while in a host function, svd may need to deal with large matrices

(resulting in entirely different parallel implementations). Therefore, the host function can be overloaded using a

device function with exactly the same signature (apart from the __device__ specifier):

function [p:mat,d:mat,q:mat] = svd(a:mat)
...

endfunction

function [p:mat,d:mat,q:mat] = __device__ svd(a:mat)
...

endfunction

when svd is then user from a kernel/device function, the device overload is used. On the other hand, when called

from a host function, the host overload will be used. In case only a device function is provided (and no host function

overload), then the device function can also still be called from the host function (see figure 4.1) but then it is not

possible to have different implementations.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 61

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.6. FUNCTIONS VERSUS LAMBDA EXPRESSIONS Chapter 4

Overloading is possible for size and dimension constraints (see 3.4). This allows the svd function to be overloaded

for 2× 2 matrices:

function [p:mat2x2,d:mat2x2,q:mat2x2] = __device__ svd(a:mat2x2)
...

endfunction

The compiler then exploits the available type information to find the most efficient implementation for the given

type.

4.5.2 Optional function parameters

It is possible to declare values for optional function parameters. When the parameter is not used, the specified

default value is used. For example,

function y = func1(x = eye(4))

function y = func2(x = eye(4), y = [[1,2],[3,4]])

func1() % same as func1(eye(4))

func1(eye(5))

func2(x:=eye(3), y:=randn(6))

func2(y:=4)

Named optional parameters can be specified through the x:=value syntax. This is mainly useful when for example

the first optional argument will be omitted, but not the second.

As indicated in the above example, the optional values can be expressions. These expressions are evaluated when

the function is called and when no argument is used. It is recommended to only use functions with no other side

effects other than calculating the value of the optional parameter. The expressions may refer to other parameters,

but only in the order that the parameters are passed:

function y = func3(x, y = 3*x)

func3(eye(4))

Here, by default y = 3*eye(4), will be used.

4.6 Functions versus lambda expressions

In Quasar, a function is defined as follows:

function y = fused_multiply_add(a, b, c)

y = a * b + c

endfunction

On the other hand, a lambda expression can be defined to compute the same result:

fused_multiply_add = (a, b, c) -> a * b + c

The question is then: what is the difference between functions and lambda expressions apart from their syntax?

From a run-time perspective, lambda expressions and functions are treated in the same way in Quasar: both are

functions of type (??,??,??) -> ??. The difference is only visible at compile-time:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 62

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.6. FUNCTIONS VERSUS LAMBDA EXPRESSIONS Chapter 4

Table 4.1: Comparison of functions and lambda expressions

Function Lambda expression

Optional arguments Yes No
Multiple output arguments Yes Yes

Supports overloading Yes No
__kernel__, __device__ Yes Yes

Function closures Yes Yes
Function handles ((??,??)->??) Yes Yes

First-class citizen Yes Yes
Can contain control structures Yes No

Can contain nested functions Yes No
Can contain nested lambda expressions Yes Yes

• Functions can have optional arguments, whereas lambda expressions cannot.

• Functions are named, while lambda expressions are often anonymous.

• Functions can be overloaded (see section 4.5), in contrast to lambda expressions, which can not be overloaded.

A second definition with the same name simply overwrites the first definition; moreover, the function variable

may become polymorphic.

• Both functions and lambda expressions can have multiple output arguments. For lambda expressions, this

requires the variable to be explicitly typed (see section 4.6.1).

• Both functions and lambda expressions can have closures (see section 4.2).

• Lambda expressions can have block statements (aa; bb; cc); although they cannot contain control structures

(if, for, while, etc.)

On the other hand, the definition of lambda expressions is more compact, and lambda expressions are often inlined

by default by the compiler.

Hence, the programmer may choose whether a function is preferable for a given situation, or a lambda expression.

A summary of the resemblances and differences between functions and lambda expressions is given in table 4.1.

4.6.1 Explicitly typed lambda expressions

A lambda expression can either be partially typed or explicitly typed. In the former case, the type of the lambda

expression parameters are typed, which causes the return value of the lambda expression to be determined by type

inference:

sincos = (x : scalar) -> [sin(x), cos(x)]

In the latter case, the variable capturing the lambda expression is explicitly typed:

sincos : [scalar -> (scalar, scalar)] =

x -> {sin(x), cos(x)}

This syntax has two benefits:

• Lambda expressions with multiple output arguments can be defined. Whereas in the first example, the lambda

expression returns a single output argument, i.e., vector of length two, in the second example, the lambda

expression itself has two output arguments.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 63

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.7. KERNEL FUNCTION OUTPUT ARGUMENTS Chapter 4

• The explicit type is applied recursively to inner lambda expressions. For example, the higher-level lambda

expression (see section 4.10):

add : [scalar->scalar->scalar] = x -> y -> x + y

is equivalent to:

add : (x : scalar) -> (y : scalar) -> x + y

When the explicit type is subsequently replaced by type alias, multiple lambda expressions can share the same

signature:

type binary_op : [scalar -> scalar -> scalar]

add : binary_op = x -> y -> x + y

sub : binary_op = x -> y -> x - y

Explicitly typed lambda expressions will be further used in the section on functional programming in Quasar (see

15).

4.7 Kernel function output arguments

To improve the syntax for kernel functions that have scalar output variables (e.g., sum, mean, standard deviation,

...), kernel output arguments are added as a special language feature to Quasar. The feature is special, because

kernel functions intrinsically generate multiple output values, as they are applied to a typically large number of

elements, while here there is only one value per output argument. The kernel output arguments are shared between

all threads and all blocks. Moreover, the kernel output arguments are restricted to be of the type scalar, cscalar,

int, ivecX, vecX and cvecX. The following example illustrates the use of kernel function output arguments:

function [y : int] = __kernel__ any(A : mat, pos : ivec2)

if A[pos] != 0

y = 1

endif

endfunction

if parallel_do(size(A),A,any)

print "At least one element of A is non-zero!"

endif

The function any returns 1 when at least one element of the input matrix A is nonzero. The variable y is initialized

by zero by the parallel_do function, before the first call to any is made.

Kernel function output arguments are also subject to data races (see section 2.4.4), therefore atomic operations

should be used! Remark that atomic operations also cause some overhead, and are only useful when there are only

a small number of writes to the output arguments. In the following example, the sum of the elements of a sparse

matrix A is computed.

function [sum : scalar] =

__kernel__ stats(A : mat, pos : ivec2)

if A[pos] != 0

sum += A[pos]

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 64

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.8. VARIADIC FUNCTIONS Chapter 4

endif

endfunction

sum = parallel_do(size(A),A,stats)

This output argument accumulation approach is only recommended when the number of nonzero elements of A is

small compared to the total number of elements of A (lets say, less than 1%). In other cases, implementation of the

sum using parallel reductions (see section 10.6) is more efficient!

Important note After completion of the kernel function, the output arguments of the kernel function are di-

rectly copied back to the CPU memory. This may not be desirable because this creates an implicit device-host

synchronization point. For multi-GPU processing (see 11), this may cause one or multiple GPUs to become idle.

The solution in this case is to use input parameters instead of output parameters:

function [] = __kernel__ stats(sum : vec(1), A : mat, pos : ivec2)

if A[pos] != 0

sum[0] += A[pos]

endif

endfunction

sum = zeros(1)

parallel_do(size(A),sum,A,stats)

The result is here stored in the vector sum. Only at the moment that the exact value of sum is needed (e.g., when

evaluating sum[0]), a memory transfer and synchronization between GPU and CPU. This can be avoided in case

a subsequently launched kernel function directly reads sum[0] via the device memory.

4.8 Variadic functions

Variadic functions are functions that can have a variable number of arguments. For example:

function [] = func(... args)

for i=0..numel(args)-1

print args[i]

endfor

endfunction

func(1, 2, "hello")

Here, args is called a rest parameter (which is similar to ECMAScript 6). How does this work: when the function

func is called, all arguments are packed in a cell vector which is passed to the function. Optionally, it is possible

to specify the types of the arguments:

function [] = func(... args:vec[string])

which indicates that every argument must be a string, so that the resulting cell vector is a vector of strings.

Several library functions in Quasar already support variadic arguments (e.g. print, plot, . . .), although now it is

possible to define your own functions with variadic arguments.

Moreover, a function may have a set of fixed function parameters, optional function parameters and variadic

parameters. The variadic parameters should always appear at the end of the function list (otherwise a compiler

error will be generated)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 65

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.8. VARIADIC FUNCTIONS Chapter 4

function [] = func(a, b, opt1=1.0, opt2=2.0, ...args)

endfunction

This way, the caller of func can specify extra arguments when desired. This allows adding extra options for e.g.,

solvers.

4.8.1 Variadic device functions

It is also possible to define device functions supporting variadic arguments. These functions will be translated by

the back-end compilers to use cell vectors with dynamically allocated memory (it is useful to consider that this may

have a small performance cost).

An example:

function sum = __device__ mysum(... args:vec)

sum = 0.0

for i=0..numel(args)-1

sum += args[i]

endfor

endfunction

function [] = __kernel__ mykernel(y : vec, pos : int)

y[pos]= mysum(11.0, 2.0, 3.0, 4.0)

endfunction

Note that variadic kernel functions are not supported.

4.8.2 Variadic function types

Variadic function types can be specified as follows:

fn : [(...??) -> ()]

fn2 : [(scalar, ...vec[scalar]) -> ()]

This way, functions can be declared that expect variadic functions:

function [] = helper(custom_print : [(...??) -> ()])

custom_print("Stage", 1)
...

custom_print("Stage", 2)

endfunction

function [] = myprint(...args)

for i=0..numel(args)-1

fprintf(f, "%s", args[i])

endfor

endfunction

helper(myprint)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 66

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.8. VARIADIC FUNCTIONS Chapter 4

4.8.3 The spread operator

Unpacking vectors The spread operator unpacks one-dimensional vectors, allowing them to be used as function

arguments or array indexers. For example:

pos = [1, 2]

x = im[...pos, 0]

In the last line, the vector pos is unpacked to [pos[0], pos[1]], so that the last line is in fact equivalent with

x = im[pos[0], pos[1], 0]

Note that the spread syntax ... makes the writing of the indexing operation a lot more convenient. An additional

advantage is that the spread operator can be used, without knowing the length of the vector pos. Assume that you

have a kernel function in which the dimension is not specified:

function [] = __kernel__ colortransform (X, Y, pos)

Y[...pos, 0..2] = RGB2YUV(Y[...pos, 0..2])

endfunction

This way, the colortransform can be applied to a 2D RGB image, as well as a 3D RGB image. Similarly, if you have

a function taking three arguments, such as:

luminance = (R,G,B) -> 0.2126 * R + 0.7152 * G + 0.0722 * B

Then, typically, to pass an RGB vector c to the function luminance, you would use:

c = [128, 42, 96]

luminance(c[0],c[1],c[2])

Using the spread operator, this can simply be done as follows:

luminance(...c)

Passing variadic arguments The spread operator also has a role when passing arguments to functions. Consider

the following function which returns two output values:

function [a,b] = swap(A,B)

[a,b] = [B,A]

endfunction

And we wish to pass both output values to one function

function [] = process(a, b)
...

endfunction

Then using the spread operator, this can be done in one line:

process(...swap(A,B))

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 67

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.9. REDUCTIONS Chapter 4

Here, the multiple values [a,b] are unpacked before they are passed to the function process. This feature is

particularly useful in combination with variadic functions.

Notes:

• Only vectors (i.e., with dimension 1) can currently be unpacked using the spread operator. This may change

in the future.

• Within kernel/device functions, the spread operator is currently supported on vector types vecX, cvecX, ivecX

(this means: the compiler should be able to statically determine the length of the vector).

• Within host functions, cell vectors can be unpacked as well.

• The spread operator can be used for concatenating vectors and scalars:

a = [1,2,3,4]

b = [6,7,8]

c = [...a, 4, ...b]

where c will be a vector of length 8. For small vectors, this is certainly a good approach. For long vectors, this

technique may have a poor performance, due to the concatenation being performed on the CPU. In the future,

the automatic kernel generator may be extended, to generate efficient kernel functions for the concatenation.

4.8.4 Variadic output parameters

The output parameter list does not support the variadic syntax Instead, it is possible to return a cell vector

of a variable length.

function [args] = func_returning_variadicargs()

args = vec[??](10)

args[0] = ...

endfunction

The resulting values can then be captured in the standard way as output parameters:

a = func_returning_variadicargs() % Captures the cell vector

[a] = func_variadicargs() % Captures the first element, and generates an

% error if more than one element is returned

[a, b] = func_variadicargs() % Captures the first and second elements and

% generates an error if more than one element

% is returned

Additionally, using the spread operator, the output parameter list can be unpacked and passed to any function:

myprint(...func_variadicargs())

4.9 Reductions

Quasar implements a very flexible compile-time graph reduction scheme to allow expression transformations. Re-

ductions are defined inside Quasar programs through a special syntax and allow the compiler to “reason” about the

operations being performed in the program, without having to evaluate these operations. The syntax is as follows:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 68

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.9. REDUCTIONS Chapter 4

reduction (var1:t1, ..., varN:tN) -> expr(var1,...,varN) = substitute(var1,...,varN)

Once the reduction has been defined, the compiler will attempt to apply the reduction each time an expression

that matches with expr has been found. Expressions can be regular Quasar expressions and are not restricted to

functions. For example, suppose that we have an efficient implementation for the fused multiply-add operation

a+b*c, called fmad(a,b,c), we can use this implementation for all combinations a+b*c that occur in the program.

This is achieved by defining the following reduction:

reduction (a:cube, b:cube, c:scalar) -> a+b*c = fmad(a,b,c) _

where size(a) == size(b)

Remark that we explicitly indicated the types of the variables a,b and c for which this reduction is applicable,

together with a restriction on the sizes of a and b (size(a) == size(b)).

Reductions can also be used to define an alternative implementation for a cascade of functions:

reduction (x) -> real(ifft2(x)) = irealfft2(x)

Here, a complex->real (C2R) 2D FFT algorithm (implemented by irealfft2(x)) will be used to compute real(ifft2(x)).

Because the C2R FFT operates on half the amount of memory of a complex->complex (C2C) FFT, the performance

will be increased by roughly a factor of two!

Reductions are also ideal for some clever “trivial” optimizations:

reduction (x:mat) -> real(x) = x

reduction (x:mat) -> imag(x) = zeros(size(x))

reduction (x:mat) -> transpose(transpose(x)) = x

reduction (x:mat) -> x[:,:] = x

reduction (x:mat) -> real(transpose(x)) = transpose(real(x))

Using the above reductions, the compiler will simplify the following expression:

f = (x : mat) -> transpose(real(ifft2(fft2(transpose(x)))))

as follows:

Applied reduction ifft2(fft2(transpose(x))) -> transpose(x)

Applied reduction real(transpose(x)) -> transpose(x)

Applied reduction (x:mat) -> transpose(transpose(x)) -> x

Result after 3 reductions: f=(x:mat) -> x

Hence, the compiler finds that the operation f(x) is an identity operation! In this trivial example, we can assume

that the programmer would have found the same result, however there are some situations that we will describe

later in this section, in which the reduction technique can save a lot of time for the programmer.

Clearly, reductions bring the following benefits:

• Define once, optimal everywhere!

• More readable and clean optimized code compared to other programming languages that do not use reductions.

• The compiler can indicate some places in the code suited for optimization, but where e.g., some of the types

of the variables is not known.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 69

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.9. REDUCTIONS Chapter 4

To avoid typing the same reduction with different types over and over again, type classes can be used (see sec-

tion §3.7):

type RealNumber: [scalar|cube|AllInt|cube[AllInt]]

type ComplexNumber: [cscalar|ccube]

reduction (x : RealNumber) -> real(x) = x

reduction (x : ComplexNumber) -> complex(x) = x

Without type classes, the reduction would need to be written four times.

4.9.1 Symbolic variables and reductions

A special subset of the reductions are the symbolic reductions. Symbolic reductions often operate on variables that

are “not defined” using the regular variable semantics. An example is given below:

reduction (x : scalar, a : scalar) -> diff(a, x) = 0

reduction (x : scalar, a : int) -> diff(x^a,x) = a*x^(a-1)

reduction (x, y, z : scalar) -> diff(x + y, z) = diff(x, z) + diff(y, z)

reduction (x : scalar, y : scalar) -> diff(x, y) = 0

reduction (x, y : scalar) -> diff(sin(x),y) = cos(x) * diff(x, y)

f = x -> diff(sin(x^4)+2,x) % Simplifies to 4*cos(x^4)*x^3

To be able to calculate derivatives with respect to variables that have not been defined/initialized, symbolic variables

can be used, using the symbolic keyword:

symbolic x : int, y : scalar

These variables have no further meaning during the execution of the program. As such, during runtime, they do

not exist. However, they help writing symbolic expressions:

reduction (f, x : scalar) -> argmin(f, x) = solve(diff(f, x) = 0, x)

symbolic x : scalar

print argmin((x-2)^2, x)

Here, the definition of x as a symbolic scalar is required, otherwise the compiler would not have any type information

about x. Then, in case the compiler is not able to determine the minimum argmin, an error will be generated:

Line 3: Symbolic operation failed - no reductions available for 'argmin((x-2)^2, x)'

4.9.2 Reduction resolution

This subsection describes how Quasar decides which reduction to use at a particular time, and also in which order

several reductions need to be applied. Suppose that we have an expression like:

reduction (A : mat, x : vec'col) -> A*x = f(x) % RED #1

reduction (A : mat, B : mat) -> norm(A, B) = sum((A-B).^2) % RED #2

g = (x : vec'col, b : vec'col) -> norm(A*x, b)

Then, both RED#1 and RED#2 can be applied. Quasar will prioritize reductions that have larger number of

input variables (in this case RED#2, with input variables A and B). Reductions that having more variables are

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 70

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.9. REDUCTIONS Chapter 4

generally more difficult to match (because they contain more conditions that need to be satisfied than reductions

with for example 1 variable). Moreover, it is assumed that, in terms of expression optimization, reductions with

more variables are designed to be more efficient. Therefore, the reduction will proceed as follows:

g = x -> sum((A*x-b).^2)

g = x -> sum((f(x)-b).^2)

In this case, the result is actually independent of the order of reduction application. However, there are cases where

the order make play a role, such that the end result may differ. This is called a reduction conflict. Reduction

conflicts will be further treated in section 4.9.3.

When the number of variables of two reductions is equal. Another criterion is needed to decide which reduction

needs to be applied first. Quasar currently uses a three-level decision rule:

1. Prioritize reductions with the largest numbers of variables.

2. Prioritize exact matches. For example, A:vec may match a reduction with variables (x:mat), because vec ⊂
mat (see section 2.2). However, when a reduction exists that has as input x:vec, this reduction will be

prioritized.

3. Prioritize application to expressions with a higher depth in the expression tree representation. Sometimes the

same reduction may be applied twice within the same expression. For example, in

reduction x -> sum(x) = my_sum(x)

f = x -> sum(sum(x))

the sum reduction can be applied twice. The order is then from right to left, which enables correct type

inference (the reduction to apply for the second step may depend on the type of my_sum(x). In terms of

an expression tree representation, this comes down to prioritizing applications with a higher depth in the

expression tree (root=depth 0, children=depth 1, ...). Hence, the reduction proceeds as follows:

f = x -> sum(my_sum(x))

f = x -> my_sum(my_sum(x))

By these rules, the reduction application will work as “expected”, and also for function applications (see section 4.5).

Overloaded functions are in fact internally implemented in Quasar using reductions:

reduction (x : cscalar) -> herm_transpose(x) = herm_transpose_cscalar(x)

reduction (x : scalar) -> herm_transpose(x) = herm_transpose_scalar(x)

reduction (x : mat) -> herm_transpose(x) = herm_transpose_mat(x)

reduction (x : cmat) -> herm_transpose(x) = herm_transpose_cmat(x)

4.9.3 Ensuring safe reductions

If not used correctly, reductions may introduce errors (bugs) in the Quasar program that may be difficult to

spot. To prevent this from happening, the Quasar compiler detects a number of situations in which the appli-

cation of a reduction is considered to be unsafe. The reduction safety level can be configured using the COM-

PILER_REDUCTION_SAFETYLEVEL variable (see table 17.3). This variable can take the following values:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 71

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.9. REDUCTIONS Chapter 4

• NONE: perform no safety checks

• SAFE: perform safety checks and report a warning in case of a problem

• STRICT: generate an error in case “unsafe” reductions have been detected.

There are five situations in which a reduction is considered to be unsafe:

1. Free variables in reduction: the right handed side of the reduction contains a variable that is not present in

the left handed side. For example:

reduction x -> f(x) + y

Here the variable y causes a problem because the compiler does not have any information on this variable. It

is hence unbound. The problem can be fixed in this case:

reduction (x, y) -> f(x) + y

2. Undefined functions in reductions: all functions in the right handed side of the reduction need to be defined

in Quasar, either through standard definitions, or through other reductions.

3. Reduction operands defined in non-local scope: when some of the operands to which a reduction is applied to,

are defined in a non-local context, side-effects maybe created in case these non-local variables are modified

afterwards. For example, a change of type may cause the reduction application to be invalid at run-time, even

though it seemed valid at compile-time. For example:

reduction x:mat -> ifft2(fft2(x)) = x

A = ones(4,4)

for k=1..10

y = x:mat -> ifft2(fft2(x + A))

A = load("myfile.dat") # may cause the reduction

ifft2(fft2(x))=x to be invalid.

endfor

4. Reduction conflicts: sometimes, the result of the application of several reductions may depend on the order of

the reductions. Usually, this is a result of poor definitions of the reductions, as demonstrated in the following

example:

reduction (A : mat, B : mat, x : vec'row) -> norm(A*x, B) = f(A, B, x) % RED #1

reduction (A : mat, B : mat) -> norm(A, B) = sum((A-B).^2) % RED #2

g = (x : vec'row, b : vec'row) -> norm(A*x, b)

In this example, we could either apply reduction #1 or reduction #2. According to the reduction resolution

results (see section 4.9.2), the Quasar compiler will choose reduction #1 because it has three variables, A, B

and x. However, applying reduction #2 would result in a completely different result sum((A*x-B).^2) and

it is not guaranteed that f(A, B, x)=sum((A*x-B).^2). The compiler detects this automatically and raises

the reduction conflict error/warning whenever there is a problem. Here, the reduction conflict can be solved

by defining:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 72

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.9. REDUCTIONS Chapter 4

reduction (A : mat, B : mat, x : vec'row) -> f(A, B, x) = sum((A*x-B).^2)

5. Reduction cross-references: circular dependencies may be created between reductions:

reduction (A, B) -> f(A, B) = g(A, B)

reduction (A, B) -> g(A, B) = f(A, B)

This obviously is also not allowed and will generate a compiler error.

These rules allow to write safe Quasar reductions which cause no undesired side-effects.

4.9.4 Reduction where clauses

Reductions can also be applied in a conditional way. This is achieved by specifying a where clause. The where

clause determines at compile time (or at runtime) whether a given reduction may be applied. There are two main

use cases for where clauses:

1. To avoid invalid results: In some circumstances, applying certain reductions may lead to invalid results (for

example a real-valued sqrt function applied to a complex-valued input, derivative of tan(x) in π/2. . .)

2. For optimization purposes (e.g. allowing alternative calculation paths).

For example:

reduction (x : scalar) -> abs(x) = x where x >= 0 reduction (x : scalar) -> abs(x) = -x where x < 0

In case the compiler has no information on the sign of x, the following mapping is applied:

abs(x) -> x >= 0 ? x : (x < 0 ? -x : abs(x))

And the evaluation of the where clauses of the reduction is performed at runtime.

However, when the compiler has information on x (e.g. assert(x = -1)), the mapping will be much simpler:

abs(x) -> -x

Note that the abs(.) function is a trivial example, in practice this could be more complicated:

reduction (x : scalar) -> someop(x, a) = superfastop(x, a) where 0 <= a && a < 1

reduction (x : scalar) -> someop(x, a) = accurateop(x, a) where 1 <= a

There are also three special conditions that can be used inside reductions. These conditions are mainly used

internally by the Quasar compiler, but can also be useful for certain user optimizations:

• $ftype("__host__"): is true only when the outer function is a host (i.e. non-kernel/device function)

• $ftype("__device__"): is true only when the outer function is a device function

• $ftype("__kernel__"): is true only when the outer function is a device function

These conditions reduce the applicability of the reduction depending on the outer function scope in which the

reduction is to be applied. For example, it is possible to specify reductions that can only be used inside device

functions, reductions for host functions etc.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 73

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.10. PARTIAL EVALUATION Chapter 4

4.9.5 Variadic reductions

In analogy to variadic functions (see 4.8), it is possible to define reductions with a variable number of arguments.

The main use of variadic reductions is two-fold:

1. Providing a calling interface to variadic functions:

reduction (a : string, ...args : vec[??]) -> myprint(a, args) = handler(a, ...args)

This avoids defining several reductions (one reduction for n number of parameters) in order to call variadic

functions.

2. Capturing symbolic expressions with variable number of terms. Suppose that we want to define a reduction

for the following expression:

λ1 (f1(x))
2

+ λ2 (f2(x))
2

+ ...+ λK (fK(x))
2

where f1, f2, ..., fK are functions to be captured, λ1, λ2, ..., λK are scaling parameters and where the number

of terms K is variable. A reduction for this expression can be defined as follows:

reduction (x, ...lambda, ...f) -> sum([lambda*f(x).^2]) = mysum(f,lambda)

Here, lambda and f are variadic captures, their type is a cell vector of respectively scalars and functions (i.e.,

vec and vec[[??->??]]). Such reduction can match expressions like:

2*(x.^2) + cos(3)*((2*x).^2) + 2*((-x).^2)

4.10 Partial evaluation

Quasar has a complete implementation of lambda expressions, and also allows partial evaluation:

f = (x, y) -> x + y

g = y -> x -> f(x, y)

print g(4)(5) % Will return 9

Here, the partial evaluation x -> f(x, y), returns a lambda expression that adds the free variable y to its input,

x. Consider for example a linear solver, that solves Ax = y, using the function x=lsolve(A, y). Suppose that we

have a large number of linear systems that need to be solved. Then we can define the partial evaluation of lsolve:

lsolver = A -> y -> lsolve(A, y)

solver = lsolver(A)

for k=1..100

x[k] = solver(y[k])

endfor

Similarly, we can have a lambda expression that solves a quadratic equation Ax2 +Bx+ C = y: x=qsolve(A, B,

C - y), by returning for example the largest solution:

qsolver = (A, B, C) -> y -> qsolve(A, B, C - y)

solver = qsolver(A, B, C)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 74

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.11. CODE ATTRIBUTES Chapter 4

for k=1..100

x[k] = solver(y[k])

endfor

Now, solver(y) is a generic solver that can be used in other numerical techniques, while lsolver and qsolver

can be used to create the desired solver.

It is also possible to define lambda expressions that have another lambda expression as input. The syntax is not f

= (x -> y) -> g(x), but:

h = (x : lambda_expr) -> f(x(y))

or, more type-safe versions:

h = (x : [?? -> ??]) -> f(x(y))

h = (x : [cube -> cube]) -> f(x(y))

For example, we can define a lambda expression that sums the output of two other lambda expressions f1 and f2,

again as another lambda expression:

f = (f1 : [?? -> ??], f2 : [?? -> ??]) = x -> f1(x) + f2(x)

or, even more generally, using reductions:

reduction (f1 : [?? -> ??], f2 : [?? -> ??], x) -> f1 + f2 = x -> f1(x) + f2(x)

f1 = x -> x * 2

f2 = x -> x / 2

f3 = f1 + f2 % Result: f3 = x -> x * 2 + x / 2

Recursive lambda expressions can be defined simply as:

factorial = (x : scalar) -> (x > 0) ? x * factorial(x - 1) : 1

One only needs to be careful that the recursion stops at a given point (otherwise a stack overflow error will be

generated1).

4.11 Code attributes

Code attributes provide a means to incorporate meta-data in Quasar source code files. Additionally, code attributes

also allow passing information to the compiler and runtime systems.

The general syntax of a code attribute is as follows:

{!attribute prop1=value1, ..., propN=valueN}

where attribute is the name of the code attribute, prop1 and propN are parameter names and value1 and valueN

are the respective values.

The following code attributes are currently available:

1Note: tail recursion optimization is currently not supported, however, for device lambda functions the underlying back-end compiler
may perform this optimization.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 75

https://en.wikipedia.org/wiki/Tail_call
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.11. CODE ATTRIBUTES Chapter 4

• Annotation data:
Code attribute Purpose

{!author name="" } Adds the name of the author to the source file. Multiple authors can be

specified using a comma-separated list

{!doc category=""} The category of the module in the documentation system

{!copyright text=""} A copyright text for the current source code file

{!description text=""} A brief description of the purpose of the source code file

{!region name=""} Begins a region in the source code (which is automatically

folded by the editor)

{!endregion} Ends a region in the source code

• Compiler code attributes:

Code attribute Purpose

{!auto_inline} Automatically inlines the current function

{!auto_vectorize} Automatically vectorizes code within the current block

{!specialize args=(arglist)} Automatically specializes a function based

on the specified argument list

{!kernel target="cpu|gpu|..."} Sets the target of the kernel function (see section 17.2.5)

{!kernel_transform Enables a given kernel transform

enable="(transform)"}

{!kernel_arg name=arg} Annotates kernel arguments with data that

can be used during the optimization

{!kernel_accumulator Annotates a variable as an accumulator

name=arg; type="+="} (for parallel reductions). This code attribute is

automatic and does not need to be used from user-code.

{!kernel_shuffle dims=[1,0]} Shuffles the dimensions of a kernel function

{!kernel_tiling dims=[1,4,1]; Performs kernel tiling

mode="global|local"; target="cpu|gpu"}

{!unroll times=4; multi_device Unrolls the current loop

=true; interleave=true}

• Loop parallelization attributes (see section §8.2):

Code attribute Purpose

{!parallel for, dim=N} Parallelizes the following N-dimensional for-loop

{!serial for, dim=N} Serializes the following N-dimensional for-loop

{!interpreted for} Interprets the following for-loop

• Runtime attributes:
Code attribute Purpose

{!sched mode=cpu|gpu|auto Sets the current scheduling mode

{!sched gpu_index=1} Sets the GPU index (for multi-GPU

processing, see section §11)

{!alloc mode=auto|cpu|gpu } Sets the memory allocation mode

{!alloc type=auto| Sets the memory allocation type

pinnedhostmem|texturemem|unifiedmem}

{!transfer vars=a,b,c; target=cpu|gpu} Transfers variables a,b,c to the CPU or GPU

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 76

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.12. MACROS Chapter 4

Code attributes that are not recognized by the compiler/runtime are simply ignored: no error or warning is gener-

ated!.

4.12 Macros

Macros allow to define custom code attributes, that have a specific effect at compile-time or at runtime. For example,

a custom code attribute may be defined to combine different code attributes, with or without conditionals. Macros

can be seen as functions that are expanded at compile-time:

macro [] = time(op) % timing macro

tic()

op()

toc()

endmacro

function [] = operation()

im = imread("lena_big.tif")[:,:,1]

for m=0..size(im,0)-1

for n=0..size(im,1)-1

im[m,n] = 255 - im[m,n]

endfor

endfor

endfunction

{!time operation}

Macros can be defined to implement optimization profiles:

macro [] = backconv_optimization_profile(radius, channels_in, channels_out, dzdw, input)

!specialize args=(radius==1 && channels_out==3 && channels_in==3 || _

radius==2 && channels_out==3 && channels_in==3 || _

radius==3 && channels_out==3 && channels_in==3 || _

radius==4 && channels_out==3 && channels_in==3)

if $target("gpu")

% Small radii: apply some shared memory caching

if radius <= 3

% Calculate the amount of shared memory required by this transform

shared_size = (2*radius+1)^2*channels_in*channels_out

{!kernel_transform enable="localwindow"}

{!kernel_transform enable="sharedmemcaching"}

{!kernel_arg name=dzdw, type="inout", access="shared", op="+=", cache_slices=dzdw[:,:,pos
[2],:], numel=shared_size

!kernel_arg name=input, type="in", access="localwindow", min=[-radius,-radius,0], max=[
radius,radius,0], numel=2048}

endif

{!kernel_tiling dims=[128,128,1], mode="global"}

elseif $target("cpu")

{!kernel_tiling dims=[128,128,1], mode="local"}

endif

endmacro

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 77

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.13. EXCEPTION HANDLING Chapter 4

The above macro instructs the compiler to perform certain optimizations depending on the provided parameter

values. In the above example, depending on the value of radius, certain operations are enabled/disabled. Macros

provide a mechanism to share optimizations between different algorithms, separating the algorithm specification

from the implementation details.

4.13 Exception handling

Quasar supports a basic form of exception handling, similar to programming languages such as Java, C#, C++

etc. Currently the exception support is quite elementary, although it may be extended in the future.

A try-catch statement consists of a try-block followed by one more catch blocks. Whenever an exception generated

within the try block, the handler in the catch block is immediately executed. The catch block received an exception

object (ex) which has by default the type qexception.

try

error "Fail again"

catch ex

print "sigh: ", ex

endtry

In the future, it will be possible to derive classes from qexception and catch specific exceptions, although for the

moment this is not possible yet.

4.14 Documentation conventions

Quasar uses Natural Docs (https://www.naturaldocs.org/) documentation conventions. This allows Natural

Docs tools to be used in combination with Quasar code. Quasar Redshift (see section §18.1) also contains a builtin

documentation viewer based on Natural Docs conventions. An example of Natural Docs for documenting a function

is given below.

% Function: harris_cornerdetector

%

% Implementation of the harris corner detector

%

% :function y = harris_cornerdetector(x : cube, sigma : scalar = 1, k : scalar = 0.04, T : scalar =
200)

%

% Parameters:

% x - input image (RGB or grayscale)

% sigma - the parameter of the Gaussian smoothing kernel

% k - parameter for the Harris corner metric (default value: 0.04)

% T - corner detection threshold (default value: 200)

function y = harris_cornerdetector(x : cube, sigma : scalar = 1, k : scalar = 0.05, T : scalar = 1)

Additionally, it is recommended to set {!author name="" } and {!doc category="" } code attributes at the

beginning of a Quasar file. In particular, documentation category contains the path where the Quasar module is

placed in the documentation browser. For example:

{!doc category="Image Processing/Multiresolution"}

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 78

https://www.naturaldocs.org/
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

4.14. DOCUMENTATION CONVENTIONS Chapter 4

See the Library folder for examples of selecting documentation categories. The Quasar libraries extensively use

NaturalDocs conventions for documentation generation.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 79

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 5

Chapter

5

The logic system

As many other programming languages, Quasar has an assert function. The assert function will evaluate the

specified condition and will result in an error message when the condition is false. The assert function can be

called with either one or two arguments:

assert(condition)

assert(condition, "condition is false")

In the second case, the error message is specified, which makes it easier for the user to resolve the issue. The assert

function also gives hints to the compiler system (see section 5.3). When the compiler is able to figure out that

the condition will never be true, a compiler error will be generated! Note that this is in contrast to most existing

programming languages, for which assert is simply a run-time function. The algorithm for evaluating assertions

is then as follows:

1. The compiler checks the condition of the assertion.

2. There are three possible outcomes: valid, satisfiable or unsatisfiable:

a) If the result is unsatisfiable, a compile-time error will be generated.

b) If the result is satisfiable, the compiler will take the condition as a hint.

c) If the result is valid, the compiler is certain that the condition will be met in all situations. Therefore,

the compiler may remove the assertion instruction from the program.

The compiler is either able to recognize the condition (see section 5.3) or not able to do so. In the former

case, a logic evaluation will be performed. In the latter case, the result is always satisfiable.

3. In case the result is satisfiable, the condition will still be checked at run-time.

The compiler is free to decide which assertions to take into account and also how to propagate information through

the various compilation phases. The exact behavior may be controlled using compiler settings. For example, the

following program may result in a compile-time error:

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 80

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

5.1. KERNEL FUNCTION ASSERTIONS Chapter 5

function [] = __kernel__ kernel (b : scalar, pos : ivec3)

assert(b==3)

endfunction

parallel_do(size(im), 2, kernel)

Here, the constant parameter value for b, is passed through the parallel_do function to the kernel function kernel.

Through automatic specialization techniques (see section 6.6), the Quasar compiler will know in this case that the

value for b is 2, resulting in a compiler error. In the future, this behavior may be extended to even more complex

scenarios.

5.1 Kernel function assertions

It is possible to call the assert function from a kernel or device function:

function [] = __kernel__ kernel (pos : ivec3)

b = 2

assert(b==3)

endfunction

Obviously, the above assertion fails. Quasar breaks with the following error message:

(parallel_do) test_kernel - assertion failed: line 23

Recall that the kernel function is typically called by many threads in parallel. Therefore, the following rules apply:

1. When the user program catches an assertion failure from a kernel function, there is at least one thread (or

position pos) for which the condition failed.

2. It is currently not possible to retrieve the position that corresponds to assertion failure.1

3. The output of the kernel function is undetermined. Some threads may have completely finished, others may

not have started. The order in which this happens is completely unspecified. In other words, when an assertion

fails, the output of the kernel function should be ignored.

Kernel function assertions provide a very useful mechanism for directly debugging and verifying code on a CPU or

GPU. The assertion system is also used internally by Quasar to perform vector and matrix boundary checking.

5.2 Built-in compiler functions

There are three meta functions that help with assertions. These functions are evaluated at compile-time (as indicated

by the $-prefix)

• ‘$check(proposition)’ checks whether the specified proposition can be satisfied, given the previous set of

assertions, resulting in three possible values: "Valid", "Satisfiable" or "Unsatisfiable".

• ‘$assump(variable)’ lists all assertions that are currently known about a variable, including the implicit type

predicates that are obtained through type inference. Note that the result of ‘$assump‘ is an expression, so

for visualization it may be necessary to convert it to a textual representation using ‘$str(.)‘ (to avoid the

expression from being evaluated).

1Note that the kernel function debugger in Quasar Redshift can bring a solution here.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 81

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

5.3. ASSERTION TYPES RECOGNIZED BY THE COMPILER Chapter 5

• ‘$simplify(expr)‘ simplifies logic expressions based on the knowledge that is inserted through assertions.

Usually, you will not need to call these functions directly from your code. Nevertheless, they can be useful for

testing (for example in interactive mode).

5.3 Assertion types recognized by the compiler

There are different types of assertions recognized by the Quasar compiler. These assertions can be combined in a

transparent way using the Boolean operators ! (inversion), && (and) and || (or).

5.3.1 Equalities

The most simple cases of assertions are the equality assertions a==b. For example:

symbolic a, b

assert(a==4 && b==6)

assert($check(a==5)=="Unsatisfiable")

assert($check(a==4)=="Valid")

assert($check(a!=4)=="Unsatisfiable")

assert($check(b==6)=="Valid")

assert($check(b==3)=="Unsatisfiable")

assert($check(b!=6)=="Unsatisfiable")

assert($check(a==4 && b==6)=="Valid")

assert($check(a==4 && b==5)=="Unsatisfiable")

assert($check(a==4 && b!=6)=="Unsatisfiable")

assert($check(a==4 || b==6)=="Valid")

assert($check(a==4 || b==7)=="Valid")

assert($check(a==3 || b==6)=="Valid")

assert($check(a==3 || b==5)=="Unsatisfiable")

assert($check(a!=4 || b==6)=="Valid")

print $str($assump(a)),",",$str($assump(b)) % prints (a==4),(b==6)

Here, we use symbolic to declare symbolic variables (variables that are not to be ”evaluated”, i.e. translated into

their actual value since they don’t have a specific value). Next, the function assert tests whether the $check(.)

function works correctly (=self-checking).

5.3.2 Inequalities

The propositional logic system can also work with inequalities:

symbolic a

assert(a>2 && a<4)

assert($check(a>1)=="Valid")

assert($check(a>3)=="Satisfiable")

assert($check(a<3)=="Satisfiable")

assert($check(a<2)=="Unsatisfiable")

assert($check(a>4)=="Unsatisfiable")

assert($check(a<=2)=="Unsatisfiable")

assert($check(a>=2)=="Valid")

assert($check(a<=3)=="Satisfiable")

assert($check(!(a>3))=="Satisfiable")

The idea is here that the inequality assertions can help the simplification of if conditions. For example,

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 82

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

5.4. USER-DEFINED PROPERTIES Chapter 5

assert(x > 10)

if x > 0
y = x

else

y = -x

endif

In this case, the if-test can be completely eliminated thereby ignoring the else-block, because it is certain that x is

positive.

5.3.3 Type assertions

Type assertions are useful for 1) checking whether a variable has a given type and 2) for giving hints to the compiler.

For example, as mentioned in section 2.2, we may use a type assertion to make sure that data read from a file has

the right type:

[A, B] = load("myfile.dat")

assert(type(A,"ccube") && type(B,"vec"))

Please note that assertions should not be used with the intention of variable type declaration. To declare the type

of certain variables type annotations can be used:

[A : ccube, B : vec] = load("myfile.dat")

Type annotations should be used on the first occurrence of a variable. In this case, the type annotation prevents

A and B from becoming a polymorphic variable (see section 4.1). For type assertions, there is no such requirement

(they can be used in combination with a polymorphic variable).

5.4 User-defined properties

It is also possible to define ”properties” of variables, using a symbolic declaration. For example:

symbolic is_a_hero, Jan_Aelterman

Then you can assert:

assert(is_a_hero(Jan_Aelterman))

Correspondingly, if you perform the test:

print $check(is_a_hero(Jan_Aelterman)) % Prints: Valid

print $check(!is_a_hero(Jan_Aelterman)) % Prints: Unsatisfiable

If you then try to assert the opposite:

assert(!is_a_hero(Jan_Aelterman))

The compiler will complain:

assert.q - Line 119: NO NO NO I don't believe this, can't be true!

Assertion '!(is_a_hero(Jan_Aelterman))' is contradictory with 'is_a_hero(Jan_Aelterman)'

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 83

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

5.5. UNASSERT Chapter 5

5.5 Unassert

In some cases, it is neccesary to undo certain assertions that were previously made. For this task, the function

‘unassert‘ can be used:

unassert(propositions)

This function only has a meaning at compile-time; at run-time nothing needs to be done. For example, if you wish

to reconsider the assertion ‘is_a_hero(Jan_Aelterman)‘ you can write:

unassert(is_a_hero(Jan_Aelterman))

print $check(is_a_hero(Jan_Aelterman)) % Prints: Satisfiable

print $check(!is_a_hero(Jan_Aelterman)) % Prints: Satisfiable

Alternatively you could have written:

unassert(!is_a_hero(Jan_Aelterman))

print $check(is_a_hero(Jan_Aelterman)) % Prints: Valid

print $check(!is_a_hero(Jan_Aelterman)) % Prints: Unsatisfiable

5.6 The role of assertions

In Quasar, the role of assertions is two-fold:

• It helps to early detect logical errors (mistakes by the programmer)

• It serves as a technique used for optimization. Firstly, assertions can specified upper bounds for variables,

which help the compiler / code generator for the specific back-ends to generate more efficient code. Secondly,

assertions can help eliminating branches in the code that are never used, as in the following example:

•

assert(x > 0)

if x > 20

y = x - 20

elseif x < -20

y = x + 20

else

y = 0

endif

In this case, the branch x < -20 can be completely eliminated, because it is known that x > 20.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 84

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 6

Chapter

6

Generic programming

Often, functions need to be duplicated for different container types (e.g. ‘vec[int8]’, ‘vec[scalar]’, ‘vec[cscalar]’).

To avoid this duplication there is support for generic programming in Quasar.

Consider the following program that extracts the diagonal elements of a matrix and that is supposed to deal with

arguments of either type ‘mat’ or type ‘cmat’:

function y : vec = diag(x : mat)

assert(size(x,0)==size(x,1))

N = size(x,0)

y = zeros(N)

parallel_do(size(y), __kernel__ (x:mat, y:vec, pos:int) -> y[pos] = x[pos,pos])

endfunction

function y : cvec = diag(x : cmat)

assert(size(x,0)==size(x,1))

N = size(x,0)

y = czeros(N)

parallel_do(size(y), __kernel__ (x:cmat, y:cvec, pos : int) -> y[pos] = x[pos,pos])

endfunction

Although function overloading here greatly solves part of the problem (at least from the user’s perspective), there

is still duplication of the function ‘diag’. In general, we would like to specify functions that can “work”irrespective

of their underlying type.In Quasar, this is fairly easy to do:

function y = diag[T](x : mat[T])

assert(size(x,0)==size(x,1))

N = size(x,0)

y = vec[T](N)

parallel_do(size(y), __kernel__ (pos) -> y[pos] = x[pos,pos])

endfunction

As you can see, the types of the function signature have simply be omitted. The same holds for the ‘__kernel__’

function.

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 85

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.1. PARAMETRIZED FUNCTIONS Chapter 6

In this example, the type parameter ‘T’ is required because it is needed for the construction of vector ‘y‘ (through

the ‘vec[T]’ constructor). If ‘T==scalar’, ‘vec[T]’ reduces to ‘zeros’, while if ‘T==cscalar’, ‘vec[T]’ reduces to

‘czeros’ (complex-valued zero matrix). In case the type parameter is not required, it can be dropped, as in the

following example:

function [] = copy_mat(x, y)

assert(size(x)==size(y))

parallel_do(size(y), __kernel__ (pos) -> y[pos] = x[pos])

endfunction

Remarkably, this is still a generic function in Quasar; no special syntax is needed here.

Note that in previous versions of Quasar, all kernel function parameters needed to be explicitly typed. This is now

no longer the case: the compiler will deduce the parameter types by calls to ‘diag’ and by applying the internal

type inference mechanism. The same holds for the ‘__device__’ functions.

When calling ‘diag’ with two different types of parameters (for example once with ‘x:mat’ and a second time with

‘x:cmat’), the compiler will make two generic instantiations of ‘diag’. Internally, the compiler may either:

1. Keep the generic definition (type erasion)

function y = diag(x)

2. Make two instances of ‘diag’ (reification):

function y : vec = diag(x : mat)

function y : cvec = diag(x : cmat)

The compiler will combine these two techniques in a transparent way, such that: 1) for kernel-functions explicit

code is generated for the specific data types and 2) for less performance-critical host code type erasion is used (to

avoid code duplication).

The selection of the code to run is made at compile-time, so correspondingly the Quasar Spectroscope debugger

has special support for this. Of course, when calling the ‘diag’ function with a variable of type that cannot be

determined at compile-time, a compiler error is generated:

The type of the arguments ('op') needs to be fully defined for this function call!

6.1 Parametrized functions

As already mentioned, generic functions can be defined by just omitting the type declarations for the function

parameters. For example, consider adding an item to a list (represented by a vector) at a given position.

function new_list = add_item(list, item, pos)
...

endfunction

However, very often it is desirable that the type relation between list and item is specified. For example, the type

of list is ’vec[T]’ where T is some type. This can be achieved using parametrized functions:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 86

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.1. PARAMETRIZED FUNCTIONS Chapter 6

function new_list = add_item[T](list : vec[T], item : T, pos)
...

endfunction

then, when the function add_item is called, the compiler (or the runtime system) will check whether the types of

list and item match. The type variable is available within the context of add_item. This easily allows variables

to be defined with the same type as item or list:

function new_list = add_item[T](list : vec[T], pos, item : T)

if pos > numel(list)

% extend the list with new items

new_list = vec[T](pos+1)

new_list[0..numel(list)-1] = list

else

new_list = list

endif

new_list[pos] = item

endfunction

list1 = vec[int](10)

list2 = vec[string](8)

add_item(list1, 5, 4) %OK

add_item(list1, 4, "text") %Type mismatch

add_item(list2, 2, "let's try again") % OK

In some cases (for example when T only determines the output parameters), we wish to select the “version” of

add_item that will be called. This can be done by filling in T explicitly (through a technique called generic function

instantiation):

add_item[int](list1, 5, 4)

add_item[string](list2, 2, "let's try again")

This is particularly useful when defining functions that return generic objects:

function list = create_list[T](initial_length : int)

list = vec[T](initial_length)

endfunction

my_list = create_list[int](10)

Parametric function themselves are variables and they have a certain type. In the above examples, the types of

add_item and create_list are:

add_item : [(vec[??], ??, ??) -> vec[??]]

add_item[int] : [(vec[int], ??, int) -> vec[int]]

add_item[string] : [(vec[string], ??, string) -> vec[string]]

create_list[int] : [int -> vec[int]]

Remarks:

• Kernel and device functions can also be parametric. For the device-specific code, only the reification technique

is used. The compiler will therefore rely on its type inference techniques to determine the types of all function

parameters.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 87

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.2. PARAMETRIZED REDUCTIONS Chapter 6

• Functions can have multiple type parameters. When one of the type parameters is not used, a compiler

warning is given.

• In essence, generic programming in Quasar allows the programmer to write programs in which none of the

data types needs to be specified. Consider the following example:

x = imread("lena_big.tif")

function [] = __kernel__ gamma_correction(x, pos)

x[pos] = 255*(x[pos]/255)^0.5

endfunction

parallel_do(size(x), x, gamma_correction)

Here, the compiler is able to determine the type of x (’cube’) and from this information the compiler finds that

the type of the parameter ’pos’ in ’gamma_correction’ is ’ivec3’. When the function ’gamma_correction’

is later used in combination with a matrix of a different type (e.g. ’mat[uint8]’), the compiler will create a

second version of ’gamma_correction’ where ’pos’ will be of type ’ivec2’.

6.2 Parametrized reductions

Similar to functions, reductions can also be parametrized. This relieves the programmer from the extra work

in replicating reductions for different data types. Parametrized reductions frequently occur in combination with

parametrized functions.

Suppose that we have a highly efficient multiplication function that works on a matrix (with an arbitrary data type)

and vectors (with the same element data type as the matrix). Then we want to define an operator * in order to

map expressions A*B onto this generic function. This can be achieved as follows:

function y = matrix_multiplication(A : mat[T], B : vec[T])
...

endfunction

reduction (T, A : mat[T], B : vec[T]) -> A*B = matrix_multiplication(A,B)

I.e., the type parameter acts as nothing more than an extra input parameter for the reduction. Optionally, the

reduction may include a where clause to impose additional constraints on T.

6.3 Parametrized types

In a type erasure approach, generic types can be obtained by not specifying the types of the members of a class:

type stack : mutable class

tab

pointer

endtype

However, this limits the type inference, because the compiler cannot make any assumptions w.r.t. the type of ‘tab’

or ‘pointer’. When objects of the type ‘stack’ are used within a for-loop, the automatic loop parallelizer will

complain that insufficient information is available on the types of ‘tab’ and ‘po(like type)inter’. This problem can

be solved by using parametrized types:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 88

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.4. GENERIC MEMORY ALLOCATION FUNCTIONS AND CASTING Chapter 6

type stack[T] : mutable class

tab : vec[T]

pointer : int

endtype

An object of the type ‘stack’ can then be constructed as follows:

obj = stack[int] % or even:

obj = stack[stack[cscalar]]

Parametric classes are similar to template classes in C++.

It is also possible to define methods for parametric classes:

function [] = __device__ push[T](self : stack[T], item : T)

cnt = (self.pointer += 1) % atomic add for thread safety

self.tab[cnt - 1] = item

endfunction

Methods for parametric classes can be ‘__device__’ functions as well, so that they can be used on both the CPU

and the GPU. This allow us to create thread-safe and lock-free implementations of common data types, such as

sets, lists, stacks, dictionaries etc. within Quasar.

6.4 Generic memory allocation functions and casting

When programming generic functions, it is often useful to allocate vectors or matrices of generic types. This

can be accomplished using generic extensions of the memory allocation functions: uninit[T](), zeros[T](),

shared[T](), shared_zeros[T](), as in the following example:

function y:'unchecked = generic_multiply[T](a : mat[T]'unchecked, b : mat[T]'unchecked) concealed

assert(size(a,1)==size(b,0),"Matrix multiplication: dimensions do not match:",size(a,0..1),"x",
size(b,0..1),"!")

y = mat[T](size(a,0),size(b,1))

for m = 0..size(y,0)-1

for n = 0..size(y,1)-1

result = cast(0.0, T)

for k = 0..size(a,1)-1

result += a[m,k] * b[k,n]

endfor

y[m,n] = result

endfor

endfor

endfor

Here, the type T is only known when either the function is specialized (i.e., at compile-time) or at runtime.

Additionally, often it is required to initialize scalar variables based on the generic type. This is achieved using a

type cast:

result = cast(0.0, T)

Note that type casts should be avoided as much as possible and should only be used when dealing with generic

functions.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 89

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.5. EXPLICIT SPECIALIZATION THROUGH META-FUNCTIONS Chapter 6

6.5 Explicit specialization through meta-functions

Normally, generic functions are automatically specialized (which is called implicit specialization). This is a compiler-

decision that relies on a number of heuristics. However, there is also the possibility of explicitly indicating that

a given function need to be specialized and also in which way. This can be achieved using the meta-function

$specialize:

$specialize(function_name, constraint1 && ... && constraintN)

In Quasar, there are three levels of genericity (for which specialization can be done):

1. Type constraints: a type constraint binds the type of an input argument of the function.

2. Value constraints: gives an explicit value to the value of an input argument

3. Logic predicates: additional assumptions on the input arguments (see 5) that are not type or value constraints

Example 1 As an example, consider the following generic function:

function y = __device__ soft_thresholding(x, T)

if abs(x)>=T

y = (abs(x) - T) * (x / abs(x))

else

y = 0

endif

endfunction

reduction x : scalar -> abs(x) = x where x >= 0

Now, we can make a specialization of this function to a specific type:

soft_thresholding_real = $specialize(soft_thresholding, type(x,"scalar") && type(T, "scalar"))

But also for a fixed threshold:

soft_thresholding_T = $specialize(soft_thresholding,T==10)

We can even go one step further and specify that ‘x>0‘:

soft_thresholding_P = $specialize(soft_thresholding,x>0)

Everything combined, we get:

soft_thresholding_E = $specialize(soft_thresholding, type(x,"scalar") && type(T,"scalar") && T==10 &&
x>0)

Based on this knowledge (and the above reduction), the compiler will then generate the following function:

function y = __device__ soft_thresholding_E(x : scalar, T : scalar)

if x >= 10

y = x - 10

else

y = 0

endif

endfunction

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 90

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.6. IMPLICIT SPECIALIZATION Chapter 6

It can be noted that the function has now significantly been simplified.

Example 2 Explicit specialization can also be used to change the types of function parameters at compile-time.

This is legal as long as the parameter types are always narrowed by this operation. This is useful for example to

address the GPU hardware texturing units (see section 9.3) in a more general way. Below, the implemenuninittation

of a 1D spatial filter with variable directionality is given.

function [] = __kernel__ filter_kernel(x : mat, y : mat'unchecked, a : vec, dir : ivec2, pos : ivec2)

offset = int(numel(a)/2)

total = 0.

for k=0..numel(a)-1

total += x[pos + (k - offset).* dir] * a[k]

endfor

y[pos] = total

endfunction

% Default implementation - simply pass all parameters to the kernel function

parallel_do(size(im),im,im_out,a,[0,1],filter_kernel)

% Implementation II - use the GPU hardware hardware texturing units (HTUs)

parallel_do(size(im),im,im_out,a,[0,1],$specialize(filter_kernel,type(x,mat'hwtex_nearest)))

% Implementation III - perform constant substitution + use the HTUs

parallel_do(size(im),im,im_out,$specialize(filter_kernel,type(x,mat'hwtex_nearest) && a==[1,2,3,2,1]/9
&& dir==[0,1]))

On an NVidia Geforce 435M GPU, the third implementation is about two times faster than the first implementation

and 10% faster than the second implementation.

6.6 Implicit specialization

When generic device functions are called from kernel/device functions, the generic device function will be implicitly

specialized (i.e., specialized automatically by the compiler).

function y = __device__ soft_thresholding(x, T)

if abs(x)>=T

y = (abs(x) - T) * (x / abs(x))

else

y = 0

endif

endfunction

function [] = __kernel__ denoising(x : mat, y : mat)

assert(x[pos]>0)

y[pos] = soft_thresholding(x[pos], 10)

endfunction

For execution on a computation device, all types must be statically determined at compile-time. Therefore, the

implicit specialization allows defining generic functions without bothering about the type to which the function will

be applied. Note that during the implicit specialization phase, the compiler may generate an error when a type

mismatch is encountered.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 91

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.7. GENERIC SIZE-PARAMETRIZED ARRAYS Chapter 6

6.7 Generic size-parametrized arrays

In some cases, it is useful to integrate knowledge on the size of arrays into their types. This can be achieved using

generic size-parametrized arrays. Consider the following example of a color transform on an image with N channels

(where N is a generic parameter):

function img_out = colortransform[N](C : mat(N,N), img : cube(:,:,N))

img_out = zeros(size(img,0),size(img,1),N)

{!parallel for}

for m=0..size(img,0)-1

for n=0..size(img,1)-1

img_out[m,n,:] = (C * squeeze(img[m,n,:]))

endfor

endfor

endfunction

The parameter N constraints the arguments C and img to match in dimensions in the following way: the third

dimension of img should match the first and second dimensions of C (if not, a compiler error or (in some rare cases)

a runtime error will be generated). Due to the implicit specialization (section 6.6), calling the function with a

mat3x3 color transform matrix will ensure that the parameter N=3 is substituted during compile-time, leading to

efficient calculation of the vector-matrix product

C * squeeze(img[m,n,:])

. The squeeze function is required here, because img[m,n,:] returns a vector of dimensions 1x1xN which is

multiplied with matrix C. The squeeze function removes the singleton dimensions and converts the vector to Nx1x1

(or simply N, since singleton dimensions at the end do not matter in Quasar). For the assignment, this conversion

is done automatically. In practice the squeeze function will have zero-overhead; it is only required here to keep the

compiler happy.

Because with this technique, the dimensions of img_out[m,n,:] are known at compile-time, the implementation

of the above function will not use dynamic kernel memory (section §8.3), which is a big performance benefit.

The type parametrization allows for linear arithmetic. Therefore, it is possible to declare types like vec(2*N) and

mat(2+N,2*N). For example, defining a matrix of type mat(2,N):

A = mat(2,N)

B = cube(N,2*N,3)

Y = A[0,:]

C = B[:,:,1]

The compiler can now infer that Y has type vec(N) and that C has type mat(N,2*N). After specialization with N=2,

C will have type mat(2,4) and the resulting variables enjoy the benefits of fixed sized data types.

6.8 Generic dimension-parametrized arrays

Often, it is useful to define functions that can handle arrays with arbitrary dimensions. For this purpose, the type

cube{:} can be used (see 2.2.5). This type specifies a cube with an arbitrary (or to speak, infinite) dimension.

Because currently Quasar does not support multidimensional for-loops directly, the easiest way is to linearize the

index and use two conversion functions:

• ind2pos(sz, index): converts a linear (scalar) index to an n-dimensional position vector

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 92

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.8. GENERIC DIMENSION-PARAMETRIZED ARRAYS Chapter 6

• pos2ind(sz, pos): converts an n-dimensional position vector to a linear (scalar) index

The following example illustrates a subsampling operation on an n-dimensional array:

function y:'unchecked = subsample(x : cube{:}, D : int)

y = uninit(int(size(x)/D))

{!parallel for}

for v = 0..numel(y)-1

p = ind2pos(size(y), v)

y[p] = x[p*D]

endfor

endfunction

Then, it might be desirable to know the dimension of the array at the moment that the function is executed.

The dimension of an array can be obtained using the ndims() function, however, in case the function has two

arrays as input, it may be desired to express that both arrays have the same dimensionality. For this purpose,

dimension-parametrized array types is available.

An example of such a function is the Kronecker product, for which the implementation is different for each value of

the dimensionality. Nevertheless, the function can be implemented in a generic fashion, as follows:

function z = kron[N](x : cube{N}, y : cube{N})

function [] = __kernel__ kernel(x : vec, y : vec, z : vec,

x_dim : ivec(N), y_dim : ivec(N), pos : int, blkdim : int, blkcnt : int)

stepsize = blkdim * blkcnt

total = prod(x_dim)

rep = prod(y_dim)

z_dim = int(x_dim .* y_dim)

for i=pos..stepsize..total-1

x_pos = ind2pos(x_dim, i)

val = x[i]

for j=0..rep-1

y_pos = ind2pos(int(y_dim), j)

z_pos = x_pos + x_dim .* y_pos

z[pos2ind(z_dim, z_pos)] = val * y[pos2ind(y_dim, y_pos)]

endfor

endfor

endfunction

z = uninit(size(x,0..N-1).*size(y,0..N-1))

nextpow2 = n -> int(2^ceil(log2(n)))

parallel_do(min(nextpow2(numel(x)), 16384), x, y, z, size(x,0..N-1), size(y,0..N-1), kernel)

endfunction

When called, the compiler will specialize the generic function kron for each value of N that occurs in the calling

code. When the dimensionalities of x and y do not match, the maximum of their dimensionalities will be used.

Note that the above implementation combines size-parametrized and dimension-parametrized arrays in a natural

way: the length of the dimension vectors x_dim and y_dim matches the dimensionality of the input data.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 93

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.9. EXAMPLE OF GENERIC PROGRAMMING: LINEAR FILTERING Chapter 6

6.9 Example of generic programming: linear filtering

A linear filter computes a weighted average of a local neighborhood of pixel intensities, and the weights are deter-

mined by the so-called filter mask.

In essence, 2D linear filtering formula can be implemented in Quasar using a 6 line __kernel__ function:

function [] = __kernel__ filter(x : cube, y : cube, mask : mat, ctr : ivec3, pos : ivec3)

sum = 0.0

for m=0..size(mask,0)-1

for n=0..size(mask,1)-1

sum += x[pos+[m,n,0]-ctr] * mask[m,n]

endfor

endfor

y[pos] = sum

endfunction

However, this may not be the fastest implementation, for two reasons:

• The above kernel function performs several read accesses to x (e.g. for 3x3 masks it requires 9 read accesses

per pixel!). As outlined in the Quick optimization guide, the implementation should use shared memory as

much as possible.

• In case the filter kernel is separable (i.e. mask = transpose(mask_y) * mask_x), a faster implementation

can be obtained by performing the filtering in two passes: a horizontal pass and a vertical pass. However, a

naive implementation of this approach may have a bad data locality and depending on the size of the filter

mask, it may even do more worse than good.

The best approach is therefore to combine the above techniques (i.e. shared memory + separable filtering). For

illustrational purposes, we will consider only the mean filter (with mask=ones(3,3)/9) in the following.

function [] = __kernel__ filter3x3kernelseparable(

x:cube,y:cube,pos:ivec3, blkpos:ivec3,blkdim:ivec3)

vals = shared(blkdim+[2,0,0])

sum = 0.

for i=pos[1]-1..pos[1]+1

sum += x[pos[0],i,blkpos[2]]

endfor

vals[blkpos] = sum

if blkpos[0]<2

sum = 0.

for i=pos[1]-1..pos[1]+1

sum += x[pos[0]+blkdim[0],i,blkpos[2]]

endfor

vals[blkpos+[blkdim[0],0,0]] = sum

endif

syncthreads

sum = 0.

for i=blkpos[0]..blkpos[0]+2

sum += vals[i,blkpos[1],blkpos[2]]

endfor

y[pos] = sum*(1.0/9)

endfunction

x = imread("image.png")

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 94

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.9. EXAMPLE OF GENERIC PROGRAMMING: LINEAR FILTERING Chapter 6

y = zeros(size(x))

parallel_do(size(y),x,y,filter3x3kernelseparable)

imshow(y)

Remark that the above implementation is rather complicated, especially the block boundary handling code is

excessive. Through generic programming, it is possible to extend this code fragment, in order to be used in a wider

context. Quasar has two programming techniques:

1. Function variables and closure variables

Suppose that we express a filtering operation in a general way:

type f : [__device__ (cube, ivec2) -> vec3]

This is a type declaration of a function that takes a cube and a 2D position as input, and computes a 3D

color value.

Then, a linear filter can be constructed simply as follows:

mask = ones(3,3)/9

ctr = [1,1]

function y : vec3 = __device__ linearfilter(x : cube, pos : ivec2)

y = [0.0,0.0,0.0]

for m=0..size(mask,0)-1

for n=0..size(mask,1)-1

y += x[pos+[m,n,0]-ctr] * mask[m,n]

endfor

endfor

endfunction

Note that the body of this function is essentially the body of the kernel function at the top of this page.

Next, we can define a kernel function that performs filtering for any filtering operation of type f:

function [] = __kernel__ genericfilterkernelnonseparable(

x:cube,y:cube, masksz:op:f,ivec2,pos:ivec3, blkpos:ivec3,blkdim:ivec3)

vals = shared(blkdim+[masksz[0]-1,masksz[1]-1,0])

vals[blkpos] = x[pos-[1,1,0]]

if blkpos[0]<masksz[0]-1

vals[blkpos+[blkdim[0]-1,-1,0]] = x[pos+[blkdim[0]-1,-1,0]]

endif

if blkpos[1]<masksz[0]-1

vals[blkpos+[blkdim[1]-1,-1,0]] = x[pos+[blkdim[1]-1,-1,0]]

endif

syncthreads

y[pos] = op(vals, blkpos)

endfunction

x = imread("image.png")

y = zeros(size(x))

parallel_do(size(y),x,y,size(mask,0..1),linearfilter,genericfilterkernelnonseparable)

imshow(y)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 95

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.9. EXAMPLE OF GENERIC PROGRAMMING: LINEAR FILTERING Chapter 6

Here, masksz = size(mask,0..1) (the size of the filter mask). Now we have written a generic kernel function,

that can take any filtering operation and compute the result in an efficient way. For example, the filtering

operation can also be used for mathematical morphology or for computing local maxima:

function y : vec3 = __device__ maxfilter(x : cube, pos : ivec2)

y = [0.0,0.0,0.0]

for m=0..size(mask,0)-1

for n=0..size(mask,1)-1

y = max(y, x[pos+[m,n,0]-ctr])

endfor

endfor

endfunction

The magic here, is to implicit use of closure variables: the function linear_filter and max_filter hold

references to non-local variables (i.e. variables that are declared outside this function). Here these variables

are mask and ctr. This way, the function signature is still [__device__ (cube, ivec2) -> vec3].

2. Explicit/implicit specialization

Previous point (1) is demonstrates a simple generic programming approach through function pointers. Some

people believe that generic programming leads to a loss in efficiency. One of their arguments is that by the

dynamic function call y[pos] = op(vals, blkpos), where op is actually a function pointer, efficiency is lost:

the compiler is for example not able to inline op and has to emit very general code to deal with this case.

In Quasar, this is not necessarily true - being a true domain-specific language, the compiler has a lot of

information. In fact, the optimization of the generic function generic_filter_kernel_nonseparable can be

made explicit, using the $specialize meta function:

linearfilterkernel = $specialize(genericfilterkernelnonseparable, op==maxfilter)

x = imread("image.png")

y = zeros(size(x))

paralleldo(size(y),x,y,size(mask,0..1),linearfilterkernel)

imshow(y)

The function $specialize is evaluated at compile-time and will substitute op with respectively linear_filter

and max_filter. Correspondingly these two functions can be inlined and the resulting code is equivalent to

the linear_filter_kernel function being completely written by hand. Now, in Quasar, function pointers

are avoided by default (through the compilation setting “enable function pointers in generated code”). This

is achieved exactly using this technique.

3. Datatype-independent implementation

We can also go one step further and generalize the data types of the above kernel function:

mask = ones(3,3)/9

ctr = [1,1]

function y : vec3 = __device__ linearfilter[T](x : cube[T], pos : ivec2)

y = [0.0,0.0,0.0]

for m=0..size(mask,0)-1

for n=0..size(mask,1)-1

y += x[pos+[m,n,0]-ctr] * mask[m,n]

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 96

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

6.9. EXAMPLE OF GENERIC PROGRAMMING: LINEAR FILTERING Chapter 6

endfor

endfor

endfor

function [] = __kernel__ genericfilterkernelnonseparable[T](

x:cube[T],y:cube[T], masksz,op:[__device__ (cube[T], ivec2) -> vec3],ivec2,pos:ivec3, blkpos:
ivec3,blkdim:ivec3)

vals = shared[T](blkdim+[masksz[0]-1,masksz[1]-1,0])

vals[blkpos] = x[pos-[1,1,0]]

if blkpos[0]<masksz[0]-1

vals[blkpos+[blkdim[0]-1,-1,0]] = x[pos+[blkdim[0]-1,-1,0]]

endif

if blkpos[1]<masksz[0]-1

vals[blkpos+[blkdim[1]-1,-1,0]] = x[pos+[blkdim[1]-1,-1,0]]

endif

syncthreads

y[pos] = op(vals, blkpos)

endfunction

x = imread("image.png")

y = zeros(size(x))

parallel_do(size(y),x,y,size(mask,0..1),linearfilter,genericfilterkernelnonseparable)

imshow(y)

Here, the compiler will specialize the function genericfilterkernelnonseparable, as follows:

$specialize(genericfilterkernelnonseparable,op==linearfilter,T==scalar)

Functions with closure variables are building blocks for larger algorithms. Functions can have arguments that are

functions themselves. Function specialization is a compiler operation that can be used to generate explicit code for

fixed argument values. In the future, function specialization may be done automatically in some circumstances.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 97

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 7

Chapter

7

Object-oriented programming

In Quasar, there are three types of classes:

• class: for creating constant objects with a fixed layout that can be marshalled to the target device (e.g.,

GPU)

• mutable class: for non-constant objects with a fixed layout that can be marshalled to the target device (e.g.,

GPU)

• dynamic class: Python-like classes, for which members can be added to the object at run-time

The distinction between class and mutable class enables the compiler and run-time to make stronger assumptions

on the constantness of the corresponding objects, potentially resulting in a more efficient execution.

Furthermore, classes of the type class and mutable class can be used from host, device and kernel functions.

Dynamic classes can only be used from host functions.

Another difference between class and dynamic class is in the null values. For dynamic class, a null reference

null is used. For class and mutable class, a null pointer nullptr needs to be used.

7.1 Mutable/non-mutable classes

Mutable/non-mutable classes require all members to be statically typed. Dynamically typed members are not

supported, because they can not be mapped onto static types on the computation device.

However, it is possible to define parametric types, in which the dynamically typed members are replaced by a

parameter type (see further). Then the parametric type needs to be instantiated (either directly, or via function

specialization), to be used on the computation device.

A example of a mutable class, with a few member functions is given below:

type point : mutable class

x : scalar

y : scalar

endtype

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 98

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

7.2. CONSTRUCTORS Chapter 7

Recursive types can also be defined, although, the recursive member needs to be a pointer type (^). For example,

the definition of a linked list of points can be as follows:

type point : mutable class

x : scalar

y : scalar

next : ^point

endtype

7.2 Constructors

A constructor can be added to the point class. The following constructor uses the default constructor point(x:=xval,

y:=yval) to initialize all object members.

function y = point(px : scalar, py : scalar)

y = point(x:=px, y:=py)

endfunction

Constructors can be overloaded. A constructor that is intended to be used from kernel/device functions should have

the __device__ modifier:

function y = __device__ point(px : scalar, py : scalar)

y = point(x:=px, y:=py)

endfunction

7.3 Destructors

Due to the automatic memory management, there are no destructors. Destructors may be added in a future version

of Quasar.

7.3.1 Methods

To define methods, Quasar uses a pattern similar to Google Go. A method is a function for which the first parameter

is self, referring to the object on which the method is called. The self object can be passed by-value (without a

pointer ^), or by reference (using the pointer ^).

function y = scale(self : point, b)

y = point(x:=b*self.x,y:=b*self.y)

endfunction

% The method point.setLocation

function [] = setLocation(self : ^point, x, y)

self.x = x

self.y = y

endfunction

% The method point.translate

function [] = translate(self : ^point, dx, dy)

self.x += dx

self.y += dy

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 99

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

7.4. DYNAMIC CLASSES Chapter 7

endfunction

% The method point.tostring

function y = tostring(self : point)

y = sprintf("(%f,%f)",self.x,self.y)

endfunction

Methods can be called in the same way as in other object-oriented languages. For example:

p = point(1.0, 2.0) % constructor

print p.scale(2) % method

Finally, methods can be overloaded. A method that is intended to be used from kernel/device functions should

have the __device__ modifier.

7.3.2 Properties

Properties can be added to the class, using reductions. The following reductions define a getter and setter for the

property length:

reduction (a : point) -> a.length = sqrt(a.x ^ 2 + a.y ^ 2)

reduction (a : ^point, b : scalar) ->

(a.length = b) = (a = point(x:=b/a.length*a.x,y:=b/a.length*a.y))

7.3.3 Operators

Similarly, operators can be defined. For example, to calculate the difference between two points, one could define:

reduction (a : point, b : point) -> a - b = point(a.x-b.x,a.y-b.y)

7.4 Dynamic classes

Dynamic classes are very useful for scripting. Consider the following dynamic class definition:

type Bird : dynamic class

name : string

color : vec3

endtype

At run-time, it is possible to add fields or methods:

bird = Bird()

bird.position = [0, 0, 10]

bird.speed = [1, 1, 0]

bird.is_flying = false

bird.start_flying = () -> bird.is_flying = true

Dynamic classes are also enable easy interoperability with other languages (e.g., C#, Visual Basic). Dynamic classes

are also frequently used by the UI library (Quasar.UI.dll).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 100

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

7.5. PARAMETRIC TYPES Chapter 7

Despite the fact that dynamic classes can have properties that are added at run-time, the compiler still performs

type inference on them, resulting in efficient code.

One limitation is that dynamic classes cannot be used from within __kernel__ or __device__ functions. As a

compensation, the dynamic classes are also a bit lighter (in terms of run-time overhead), because there is no multi-

device (CPU/GPU/. . .) management overhead. It is known a priori that the dynamic objects will “exist” in the

CPU memory.

7.5 Parametric types

A disadvantage of non-static types is that the compiler may not be able to determine the types of the members of

the class.

type stack : mutable class

tab

pointer

endtype

In this case, the compiler cannot make any assumptions w.r.t. the type of tab or pointer. When objects of the

type stack are used within a for-loop, the automatic loop parallelizer will complain that insufficient information is

available on the types of tab and pointer.

Parametric types can be used to solve this issue:

type stack[T] : mutable class

tab : vec[T]

pointer : int

endtype

An object of the type stack can then be instantiated as follows:

obj = stack[int]()

obj = stack[stack[cscalar]]()

It is also possible to define methods for parametric classes:

function [] = __device__ push[T](self : stack[T], item : T)

cnt = (self.pointer += 1) % atomic add for thread safety

self.tab[cnt - 1] = item

endfunction

Methods for parametric classes can be __device__ functions as well, so that they can be used on both the CPU

and the GPU.

The internal implementation of parametric types and methods in Quasar (i.e. the runtime) uses a combination of

erasure and reification.

Defining a constructor is based on the same pattern that we used to define methods. For the above stack class, we

have:

function y = stack[T]()

y = stack[T](tab:=vec[T](100), pointer:=0)

endfunction

% Constructor with int parameter

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 101

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

7.6. INHERITANCE Chapter 7

function y = stack[T](capacity : int)

y = stack[T](tab:=vec[T](capacity), pointer:=0)

endfunction

% Constructor with vec[T] parameter

function y = stack[T](items : vec[T])

y = stack[T](tab:=copy(items), pointer:=0)

endfunction

Note that the constructor itself creates an instance of the type, rather than that it is done automatically. Conse-

quently, it is possible (although it should be avoided) to return a nullptr value as well.

function y : ^stack[T] = stack[T](capacity : int)

if capacity > 1024

y = nullptr % Capacity too large, no can do...

else

y = stack[T](tab:=vec[T](capacity), pointer:=0)

endif

endfunction

Operators/properties on parametric classes can be defined using parametric reductions. In a parametric reduction,

the type parameter itself is part of the parameter list of the reduction.

type point[T] : mutable class

x : T

y : T

endtype

reduction (T, a : point[T], b : point[T]) -> a - b = point[T](a.x-b.x,a.y-b.y)

Note: it is currently not possible to define constraints on the type parameters. This functionality may be added in

a future version of Quasar.

7.6 Inheritance

Inherited classes can be defined as follows:

type bird : class

name : string

color : vec3

endtype

type duck : bird
...

endtype

Inheritance is allowed on all three class types (mutable, immutable and dynamic).

Note: multiple inheritance is currently not supported.

As an example, consider the following point, line and circle classes:

type geometry : mutable class

color : scalar

endtype

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 102

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

7.7. VIRTUAL FUNCTIONS, INTERFACES, ABSTRACT CLASSES Chapter 7

type point : geometry

x : scalar

y : scalar

endtype

type line : geometry

p1 : point

p2 : point

x1 : scalar

y1 : scalar

x2 : scalar

y2 : scalar

endtype

type circle : point

radius : scalar

endtype

function y = distance_from_origin(p : ^point)

y = sqrt(p.x^2 + p.y^2)

endfunction

c = circle(color:=0, radius:=4, x:=12, y:=5)

g = geometry(color:=1)

p = point(x:=4, y:=3, color:=1)

print "point distance from origin: ", distance_from_origin(p) % result=5

print "circle center distance from origin: ", distance_from_origin(c) % result=13

7.7 Virtual functions, interfaces, abstract classes

Virtual functions, interfaces, abstract classes are currently not supported by Quasar. These concepts may be

implemented in a future version.

As a simple alternative of an interface, function types can be used. This way, it is possible to ‘emulate’ interfaces

in Quasar:

type my_interface : mutable class

times2_function : [__device__ scalar -> scalar]

sum_function : [__device__ vec -> scalar]

do_something : [(^my_interface) -> ??]

endtype

obj = my_interface(

times2_function := (__device__ (x : scalar) -> 2*x),

sum_function := (__device__ (x : vec) -> sum(x)),

do_something := (self : ^my_interface) -> print(self)

)

print obj.times2_function(2)

print obj.sum_function([1,2,3])

obj.do_something(obj)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 103

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

7.7. VIRTUAL FUNCTIONS, INTERFACES, ABSTRACT CLASSES Chapter 7

In the same way, abstract classes and virtual functions can be emulated. An advantage is that this technique works

across computation devices, with no additional compiler support.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 104

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 8

Chapter

8

Special programming patterns

8.1 Matrix/vector expressions

Operations on large matrices are grouped and automatically converted into a kernel function (sometimes called

broadcasting). For example:

x = randn(512,512,64)

y = 0.1 + (0.8 * 255 * sin(x/255)) + 10 * w

will automatically be translated to:

function [_out:cube]=opt__auto_optimize1(x:cube,w:cube)

function [] = __kernel__ opt__auto_optimize1_kernel _

(_out:cube'unchecked,x:cube'unchecked,w:cube'unchecked,pos:ivec3)

_out[pos]=((0.1+(204*sin((x[pos]/255))))+(10*w[pos])))

endfunction

_out = uninit(size(x)))

parallel_do(size(x),_out,x,w,opt__auto_optimize1_kernel)

endfunction

reduction (x:cube, w:cube) -> (((0.1+(204*sin((x/255))))+(10*w))= _

opt__auto_optimize1(x,w)

x = randn(512,512,64)

y = opt__auto_optimize1(x, w)

which is faster, because intermediate results are directly computed in local memory, without accessing the global

memory (see section 2.4.3). Remark that this procedure depends on the success of the type inference. In some

cases, it may be necessary to give a hint to the compiler about the types of certain variables, through as-

sert(type(var,"typename")) (see section 2.2). Also, the expression optimizer generates a reduction to deal

with expressions of the form (((0.1+(204*sin((x/255))))+(10*w)). When the same expression appears several

times in the code, even in slightly modified version (e.g. sin(sinc(x)/255) instead of sin(x/255)), the generated

__kernel__ function will be re-used.

The expression optimization can be configured using the following pragma:

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 105

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.2. LOOP PARALLELIZATION/SERIALIZATION Chapter 8

#pragma expression_optimizer (on|off)

8.2 Loop parallelization/serialization

In Quasar, loop parallelization consists of 1) the detection of parallelizable (or serializable) loops and 2) the automatic

generation of kernel functions for these loops. The automatic loop parallelizer (ALP) attempts to parallelize for-

loops, starting with the outside loops first. The ALP automatically recognizes one, two and three dimenional

for-loops, and also maximizes the dimensionality of the loops subject to parallelization. The ALP extracts the loops

and converts them to kernel functions (see section 2.4.1), which are subsequently optimized using target-specific

code transformations (see 17). Howver, not every for-loop can be parallelized and executed on a GPU: a number of

restrictions exist:

1. All variables that are being used inside the loop must have a static type (i.e. explicitly typed as vec, mat, cube,

see section 2.2) or a static type can be inferred from the context (type inference or through explicit/implicit

specialization, see section §6). Practically speaking: only types that can be used inside __kernel__ or

__device__ functions are allowed.

2. For the best performance, for slicing operations A[a..b,2], the dimensions a and b must be constant and

known at compile time (either specified explicitly, or obtained through constant propagation). When these

constants are not known, a nested kernel function will be generated. Depending on the context, this may or

may not involve dynamic kernel memory (see section §8.3)

3. The for-loop nest must be perfect (no code in between subsequent for statements, no dependencies between

the loop boundaries, no break, no continue) for example:

for m=0..size(x,0)-1

for n=5..size(y,0)-1

endfor

endfor

This is an example of a imperfect loop:

for m=0..size(x,0)-1

for n=m..size(y,0)-m

endfor

endfor

(Note: certain types of imperfect loops can also be handled using the imperfect loop function transform, this

requires placing

{!function_transform enable="imperfectloop"}

inside the for-loop)

4. Only types that can be used inside kernel or device functions are allowed (e.g., types based on class and

mutable class, but not dynamic class).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 106

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.2. LOOP PARALLELIZATION/SERIALIZATION Chapter 8

5. When host (i.e. non kernel/device) functions are called from a loop, the loop is not eligible for paralleliza-

tion/serialization. In particular, only a limited number of built-in functions are supported. Functions that

interact with/take variables with unspecified types (such as print, load, save, ...) are not supported.

6. Data dependencies/conflicts between different iterations are detected and not allowed. In case a dependency

is detected, the loop can be serialized. In this case, the for-loop will be natively compiled (in C++) and

executed on the CPU in single-threaded mode.

7. Advanced kernel function features such as shared memory and thread synchronization (see section 2.4.4)

are not supported, because these functions often require low-level access to the block position (blkpos) and

dimensions (blkdim).

In case one of these conditions are violated, an error message is generated, and the code is not parallelized. In

default form, this leads coded to be interpreted by the Quasar interpreter (often resulting in a significantly slower

execution). It is therefore recommended to resolve issues raised by the automatic for-loop parallelizer.

The ALP can be configured using the pragmas (see section 17.3):

#pragma loop_parallelizer (on|off)

and the global configuration setting

COMPILER_AUTO_FORLOOP_PARALLELIZATION

(see table 17.3).

Individual for-loop parallelization can also be controlled by placing a code attribute (see section §4.11) in front of

the for-loop definition. The following code attributes are available:

• {!parallel for}: forces the loop to be parallelized, despite dependencies (i.e., potential data races) detected

between the variables. In the latter case, a warning message is shown.

• {!parallel for; dim=n}: forces the following n loops to be parallelized jointly. Note that this operation

requires that the for-loop openings are placed directly after each other, without any intermediate statements

(apart from comments). Explicitly specifying the dimension allows the outer n loops to be parallelized even in

cases that there are some additional inner loops. When the dims parameter is omitted, the compiler attempt

to select a maximal value for dims depending on the inner for-loops.

• {!parallel for; multi_device=true}: causes the for-loop to be parallelized over multiple devices (at least,

for runtime engines that support multiple devices, see section §11).

• {!serial for}: serializes the for-loop, for execution on devices that support serial execution (e.g., the CPU).

• {!interpreted for}: forces the loop to be interpreted. This comes at a computational cost, but can still be

useful for e.g., debugging purposes

An example of ALP code attributes is given below:

im = imread("image.tif","rgb")

{!parallel for}

for m=0..size(im,0)-1

for n=0..size(im,1)-1

im[m,n,0..2] = 255-im[m,n,0..2]

endfor

endfor

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 107

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.2. LOOP PARALLELIZATION/SERIALIZATION Chapter 8

Most of the time, {!parallel for} is not required because the compiler is able to detect the parallelism automati-

cally. However, {!parallel for} ensures that the subsequent loop will be parallelized, generating a compiler error

when this fails.

8.2.1 While-loop serialization

The ALP is also able to serialize while loops, as in the following example:

{!serial for}

while !finished

x = a[0,index]

y = a[1,index]

index += 1

if x.^2 + y.^2 < 1

finished = true

endif

endwhile

8.2.2 Example: gamma correction

The following example illustrates a gamma correction operation:

im = imread("image.tif")

im_out = zeros(size(im))

gamma = 1.1

tic()

{!parallel for}

for i=0..size(im,0)-1

for j=0..size(im,1)-1

for k=0..size(im,2)-1

im_out[i,j,k] = im[i,j,k]^gamma

endfor

endfor

endfor

toc()

fig1 = imshow(im)

fig2 = imshow(im_out)

fig1.connect(fig2)

When no code attribute ({!parallel for}, {!serial for}) is used, the compiler will analyze the code, inspect

the variable dependencies and decide whether the loop can be parallelized or serialized. In fact, it is not necessary

to specify these code attributes, however, when it is done, the compiler will generate an error in case the paral-

lelization/serialization fails (e.g., due to some data dependency). Resolving these errors may allow the code to be

parallelized.

Warning : when {!parallel for} is placed in front of a loop, the loop will be parallelized irrespective of the

dependencies. Consequently, when using {!parallel for} uncarefully, the program behavior is affected and the

wrong results may be obtained!

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 108

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.3. DYNAMIC KERNEL MEMORY Chapter 8

8.3 Dynamic kernel memory

Very often, it is desirable to construct (non-fixed length) vector or matrix expressions within a for-loop (or a kernel

function). Before Jan. 2014, this resulted in a compilation error “function cannot be used within the context of a

kernel function” or “loop parallelization not possible because of function XX”. The transparent handling of vector

or matrix expressions with in kernel functions requires some special (and sophisticated) handling by the Quasar

compiler and runtime. In particular: what is needed is dynamic kernel memory. This is memory that is allocated

on the GPU (or CPU) during the operation of the kernel. The dynamic memory is disposed (freed) either when

the kernel function terminates or at a later point.

There are a few use cases for dynamic kernel memory:

• When the algorithm requires to process several medium-sized (16x16) to large-sized (e.g. 128x128) matrices.

For example, a kernel function that performs matrix operations for every pixel in the image. The size of the

matrices may or may not be known in advance.1

• Efficient handling of multivariate functions that are applied to (non-overlapping or overlapping) image blocks.

• When the algorithm works with dynamic data structures such as linked lists, trees, it is also often necessary

to allocate “nodes” on the fly.

• To use some sort of “/scratch” memory that does not fit into the GPU shared memory (note: the GPU

shared memory is 32K, but this needs to be shared between all threads - for 1024 threads this is 32 bytes

private memory per thread). Dynamic memory does not have such a stringent limitation. Moreover, dynamic

memory is not shared and disposed either 1) immediately when the memory is not needed anymore or 2) when

a GPU/CPU thread exists. Correspondingly, when 1024 threads would use 32K each, this will require less

than 32MB, because the threads are logically in parallel, but not physically.

In all these cases, dynamic memory can be used, simply by calling the zeros, ones, eye or uninit functions. One

may also use slicing operators (A[0..255, 2]) in order to extract a sub-matrix. The slicing operations then take

the current boundary access mode (e.g. mirroring, circular) into account. Dynamic kernel memory has the following

advantages:

• Memory can be allocated and released on the fly (for example, scratch pads within a kernel that exceed the

shared memory size)

• Functions can be written in a generic way so that they can handle any vector/matrix dimensions

However, there also some drawbacks:

• Despite the internal parallel memory allocator being quite efficient, code that uses dynamic kernel memory

is generally 10x-25x slower than code that does not rely on dynamic kernel memory. This is due to 1) the

execution cost of allocation and disposal operations (which are performed behind the scenes) and 2) the storage

of the data in the global memory which is slower than, e.g., register memory.

• The restrictions of the dynamic memory subsystem may cause runtime errors to be generated, for example

when insufficient dynamic kernel memory is available. To alleviate this problem, it is possible to increase the

amount of dynamic kernel memory by a configuration setting (in Redshift: Program Settings/runtime/kernel

dynamic memory reserve), although this memory is then not available for other purposes.

1Note that to avoid use of dynamic kernel memory in some cases, types can be annotated with size information (see section §3.3).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 109

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.3. DYNAMIC KERNEL MEMORY Chapter 8

Because of these drawbacks, an optimization warning is generated by the compiler. It is recommended to use

dynamic kernel memory sparely and only when there is no direct alternative. Different approaches exist to avoid

that dynamic kernel memory is used:

• Use of array size constraints (see section §3.3). The resulting variables have the advantages that the memory

is stored in the registers or on the stack (which is highly efficient).

• Use of size-parametrized generic types (see section §6.7).

• Memory preallocation: allocate one large matrix (using zeros, uninit functions) outside the kernel function

and pass the matrix to the kernel function

8.3.1 Examples

The following program transposes 16x16 blocks of an image, creating a cool tiling effect. Firstly, a kernel function

version is given and secondly a loop version. Both versions are equivalent: in fact, the second version is internally

converted to the first version.

Kernel version

function [] = __kernel__ kernel (x : mat, y : mat, B : int, pos : ivec2)

r1 = pos[0]*B..pos[0]*B+B-1 % creates a dynamically allocated vector

r2 = pos[1]*B..pos[1]*B+B-1 % creates a dynamically allocated vector

y[r1, r2] = transpose(x[r1, r2]) % matrix transpose

% creates a dynamically allocated vector

endfunction

x = imread("lena_big.tif")[:,:,1]

y = zeros(size(x))

B = 16 % block size

parallel_do(size(x,0..1) / B,x,y,B,kernel)

Loop version

x = imread("lena_big.tif")[:,:,1]

y = zeros(size(x))

B = 16 % block size

{!parallel for}

for m = 0..B..size(x,0)-1

for n = 0..B..size(x,1)-1

A = x[m..m+B-1,n..n+B-1] % creates a dynamically allocated vector

y[m..m+B-1,n..n+B-1] = transpose(A) % matrix transpose

endfor

endfor

8.3.2 Memory models

To acommodate the widest range of algorithms, two memory models are currently provided (some more may be

added in the future).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 110

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.3. DYNAMIC KERNEL MEMORY Chapter 8

1. Concurrent memory model (default)

In the concurrent memory model, the computation device (e.g. GPU) autonomously manages a separate

memory heap that is reserved for dynamic objects. The size of the heap can be configured in Quasar and is

typically 32MB.

The concurrent memory model is extremely efficient when all threads (e.g. ≥ 512) request dynamic memory at

the same time. The memory allocation is done by a specialized parallel allocation algorithm that significantly

differs from traditional sequential allocators.

For efficiency, there are some internal limitations on the size of the allocated blocks:

• The total amount of kernel dynamic memory is by default 128 MB, but can be configured (see Red-

shift/program settings/Runtime/Memory management)

• The maximum size is by default 64 KiB (65536 bytes), but can be configured (see Redshift/program

settings/Runtime/Memory management).

• The minimum size is by default 64 bytes and scales linearly with the setting of maximum size. When the

allocation request size is smaller than this minimum size, the request size is rounded up to the minimum

size.

• All Quasar modules need to use the same kernel dynamic memory settings: this is necessary so that

dynamic memory blocks can be accessed correctly (allocated, deallocated) in between different modules

Also note that the maximum size also incorporates the management overhead (reference counting, block sizes

etc.), so in case you intend to allocate a 128× 128 matrix in 32-bit precision float mode (64K) it is required

to select 128 KiB.

The concurrent memory model is primarily designed to enable a large number of concurrent allocations

of relatively small memory blocks (for example to perform a local matrix calculation). It is generally not

memory-efficient to allocate large memory blocks from a kernel function in the concurrent memory model.

This is because often thousands of threads may be launched on the GPU, and correspondingly, thousands of

dynamically allocated memory blocks may be active for a certain local calculation. However, the temporary

memory blocks may easily consume several megabytes of GPU memory, and this may restrict the amount of

GPU memory available for other purposes. For example, consider 2800 concurrent threads using each 128KB

of data. This corresponds to 377MB of GPU memory!

Therefore, for large dynamic memory allocations, consider using the cooperative memory model.

2. Cooperative memory model

In the cooperative memory model, the kernel function requests memory directly to the Quasar allocator. This

way, there are no limitations on the size of the allocated memory. Also, the allocated memory is automatically

garbage collected. To enable the cooperative memory model from a kernel function, use:

{!kernel memorymodel="cooperative"}

inside the kernel function.

Because the GPU cannot launch callbacks to the CPU, this memory model requires the kernel function to be

executed on the CPU.

Advantages:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 111

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.3. DYNAMIC KERNEL MEMORY Chapter 8

• The maximum block size and the total amount of allocated memory only depend on the available system

resources.

Limitations:

• Can only be used from CPU kernel functions.

• The Quasar memory allocator uses locking (to limited extend), so simultaneous memory allocations on

all processor cores may be expensive.

8.3.3 Features

• Device functions can also use dynamic memory. The functions may even return objects that are dynamically

allocated.

• The following built-in functions are supported and can be used from within kernel and device

functions:

zeros, czeros, ones, uninit, eye,

copy, reshape, repmat, shuffledims,

seq, linspace, real, imag, complex,

mathematical functions matrix/matrix

multiplication matrix/vector multiplication

Note: when the above functions are applied to arrays with size constraints (see section §3.3), no dynamic

kernel memory will be used.

8.3.4 Performance considerations

Dynamic kernel memory can greatly improve the expressibility of Quasar programs, however there are also a number

of downsides that need to be taken into account.

• Global memory access: code relying on dynamic memory may be slow (for linear filters on GPU: 4x-8x slower),

not because of the allocation algorithms, but because of the global memory accesses. However, it all depends

on what you want to do: for example, for non-overlapping block-based processing (e.g., blocks of a fixed size),

the dynamic kernel memory is an excellent choice.

• Static vs. dynamic allocation: when the size of the matrices is known in advanced, static allocation (e.g. outside

the kernel function may be used as well). The dynamic allocation approach relieves the programmer from

writing code to pre-allocate memory and calculating the size as a function of the size of the data dimensions.

The cost of calling the functions uninit, zeros is negligible to the global memory access times (one memory

allocation is comparable to 4-8 memory accesses on average - 16-32 bytes is still small compared to the typical

sizes of allocated memory blocks). Because dynamic memory is disposed whenever possible when a particular

threads exists, the maximum amount of dynamic memory that is in use at any time is much smaller than the

amount of memory required for pre-allocation.

• Use vecX, matXxY, cubeXxYxZ, ... types (with size constraint) whenever your algorithm allows it (see sec-

tion §3.3). This completely avoids using global memory, by using the registers instead. Once a vector of

length 17 is created, the vector is allocated as dynamic kernel memory.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 112

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.4. MAP AND REDUCE PATTERN Chapter 8

• Avoid writing code that leads to thread divergence: in CUDA, instructions execute in warps of (typically)

32 threads. Within a warp, instructions of different threads are executed at the same time (called implicit

SIMD). Control flow instructions (if, match, repeat, while) can negatively affect the performance by causing

threads of the same warp to diverge; that is, to follow different execution paths. Then,the different execution

paths must be serialized, because all of the threads of a warp share a program counter. Consequently, the

total number of instructions executed for this warp is increased. When all the different execution paths have

completed, the threads converge back to the same execution path.

• To obtain best performance in cases where the control flow depends on the position (i.e., pos or blkpos), the

controlling condition should be written so as to minimize the number of divergent warps.

8.4 Map and Reduce pattern

A popular parallel programming model is the Map and reduce model. In this model, a Map() function is applied

to the data and subsequently, the data is aggregated using a Reduce() function. In its most simple for, a sequential

implementation would be as follows:

total = 0.0

for m=0..511

for n=0..511

total = total + map(im[m,n])

endfor

endfor

If this loop would be parallelized directly, this would lead to data races, because the summation (total = total

+ ...) is not atomic. Luckily the Quasar compiler atomizes this summation operation behind the screens, leading

to the following parallel loop:

total = 0.0

{!parallel for}

for m=0..511

for n=0..511

total += map(im[m,n])

endfor

endfor

For an overview how the compiler atomizes operations, see table 8.1. Note that this programming pattern may

occur with multiple result values: the result can be a scalar value, a vector or even a matrix:

A = zeros(2,2)

{!parallel for}

for i=0..255

A[0,0] += x[i,0]*y[i,0]

A[0,1] += x[i,0]*y[i,1]

A[1,0] += x[i,1]*y[i,0]

A[1,1] += x[i,1]*y[i,1]

endfor

Direct implementation of this loop in OpenCL and CUDA would give a poor performance on GPU devices, due

to all adds being serialized in the hardware (all threads need to write to the same location in memory, so there

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 113

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.5. CUMULATIVE MAPS (PREFIX SUM) Chapter 8

Table 8.1: Atomization table of operators

Non-atomized Atomized Description

a = a + b a += b Addition
a = a - b a -= b Subtraction
a = a * b a *= b Multiplication

a = max(a, b) a ^^= b Maximum
a = min(a, b) a __= b Minimum
a = and(a, b) a &= b Bitwise AND
a = or(a, b) a |= b Bitwise OR
a = xor(a, b) a ~= b Bitwise XOR

is a spin-lock that basically serializes all the memory write accesses). The performance is often much worse than

performing all operations sequentially on a CPU!

The obvious solution is the use of shared memory, thread synchronization in combination with parallel reduction

(see section 10.6). In general it is quite hard to write these kind of algorithms, taking all side-effects in consideration,

such as register pressure, shared memory pressure. Therefore, the Quasar compiler now detects the above pattern

and converts it into an efficient parallel reduction algorithm. There are some considerations:

• The following operators are supported: addition (+=), subtraction (-=), multiplication (*=), minimum (__=),

maximum (^^=), bitwise AND (&=), bitwise OR (|=) and bitwise XOR (~=).

• The compiler allows maximal flexibility in defining the body of the loop: i.e., it is possible to use control

structures (if, loop, while, ...). Also, other intermediate values can be calculated, hence it is not a prerequisite

that the loop only consists of summation statements such as in the above example.

• The reduction may also perform a dimension reduction (for example, summing a matrix along the rows).

Currently, the Quasar compiler supports dimension reductions for which the number of dimensions is reduced

with 1 at the time (dimension reduction in multiple dimensions at the time may be supported in tfuture

versions).

• There is an upper limit on the number of accumulators (due to the size limit of the shared memory). For

32-bit floating point, up to 32 accumulators and for 64-bit floating point, up to 32 accumulators are supported.

When the upper limit is exceeded, the generated code will still work, but the block size will silently be reduced

(see also section §9.9). This, together with the impact on the occupancy (due to high number of registers

being used) might lead to a performance degradation.

8.5 Cumulative maps (prefix sum)

A related frequently occurring programming patterns are cumulative maps, for example:

total = 0.0

{!parallel for}

for m=0..511

for n=0..511

im[m,n] = im[m-1,n] + map(im[m,n])

endfor

endfor

Here, we assume that the ’safe access modifier is used (see section 2.4.1), so that im[m-1,n] for m=0 is equal to

0. Some applications of the cumulative map patterns are cumulative sums (e.g., integral images), infinite impulse

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 114

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.6. META FUNCTIONS Chapter 8

response (IIR) filters, etc. The cumulative map pattern is closely related to the map and reduce pattern, with the

difference that the intermediate calculated values also need to be stored in memory.

The parallel algorithm for efficiently calculating a cumulative map is the prefix sum. By static analysis, the Quasar

compiler is able to recognize the above pattern and convert it into a parallel prefix sum algorithm. The conditions

are mostly the same as in case of the parallel reduction pattern:

• The following operators are supported: addition (+=), subtraction (-=), multiplication (*=), minimum (__=),

maximum (^^=), bitwise AND (&=), bitwise OR (|=) and bitwise XOR (~=).

• Again, the compiler allows maximal flexibility in defining the body of the loop: i.e., it is possible to use control

structures (if, loop, while, ...).

• One restriction is that the dependency should be im[m,n] ← im[m-k,n] where k is always 1. Higher order

cumulative patterns (e.g., as in higher-order IIR filters) are not supported yet. In this case, it is recommended

to decompose the filter into a cascade of first order IIR filters. Each filter of the cascade can then by individually

parallelized using the cumulative map pattern.

8.6 Meta functions

Note: this section gives more advanced info about how internal routines of the compiler can be accessed from user

code. Normally these functions do not need to be used directly, however this information can still be useful for

certain operations.

Quasar has a special set of built-in functions, that are aimed at manipulating expressions at compile-time (although

in the future the implementation may also allow them to be used at run-time). The functions are special, because

actually, they do not follow the regular evaluation order (i.e. they can be evaluated from the outside to the inside

of the expression, depending on the context). To make the difference clear with the host functions, these functions

start with prefix $.

For example, x is an expression, as well as x+2 or (x+y)*(3*x)^99. A string can be converted (at runtime) to an

expression using the function eval. This is useful for runtime processing of expressions for example entered by the

user. However, the opposite is also possible:

print $str((x+y)*(3*x)^99) % Prints "(x+y)*(3*x)^99"

This is similar to the string-izer macro symbol in C:

#define str(x) #x

However, there are a lot of other things that can be done using meta functions. For example, an expression can be

evaluated at compile-time using the function $eval (which differs from eval)

print $eval(log(pi/2)) % Prints 0.45158273311699, but the result is computed at compile-time.

The $eval function also works when there are constant variables being referred (i.e. variables whose values are known

at compile-time). Although this seems quite trivial, this technique opens new doors for compile-time manipulation

of expressions that are completely different from C/C++ but somewhat similar to Maple or LISP macros).

Below is a small overview of the meta functions in Quasar:

• $eval(.): compile-time evaluation of expressions

• $str(.): conversion of an expression to string

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 115

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.6. META FUNCTIONS Chapter 8

• $subs(a=b,.): substitution of a variable by another variable or expression

• $check(.): checks the satisfiability of a given condition (the result is either valid, satisfiable or unsatisfiable),

based on the information that the compiler has at this point.

• $assump(.): returns an expression with the assertions of a given variable

• $simplify(.): simplifies boolean expressions (based on the information of the compiler, for example constant

values etc.)

• $args[in](.): returns an expression with the input arguments of a given function.

• $args[out](.): returns an expression with the input arguments of a given function.

• $nops(.): returns the number of operands in the expression

• $op(.,n): returns the n-th operand of the expression

• $ubound(.): calculates an upper bound for the given expression

• $specialize(func,.): performs function specialization (see section §6.5)

• $inline(lambda)(...): performs inlining of lambda expressions/functions

• $ftype(x) with x="__host__"/"__device__"/"__kernel__": determines whether we are inside a host, de-

vice or kernel function.

• $typerecon(x,y) : reconstructs the type of the specified function with a given set of (specialized) input pa-

rameters. For example, given a function f = x -> x, $typerecon(f,type(x,scalar)) will return [scalar-

>scalar]. This meta function is mainly used internally in the compiler.

• $target(.): indicates whether we are compiling for the given target platform (see section 17.2.6).

Notes:

• Most of these functions (and in particular $eval, $check, $specialize, $typerecon and $inline) are only

provided for testing and should not be used from user-code.

• The function $ftype is useful in combination with reductions with where clause (section 4.9.4), to express

that the reduction may only be applied in a device/kernel or host function (also see [functions](Functions-in-

Quasar)). For example:

reduction x -> log(x) = x - 1 where abs(x - 1) < 1e-1 && $ftype("__device__")

means that the reduction for log(x) may only be applied inside __device__ functions, when the condition abs(x

- 1) < 1e-1 is met. Here, this is simply a linear approximation of the logarithm around x==1.

Example: copying the type and assumptions from one variable to another

It is possible to write statements such as ”assume the same about variable ’a’ as what is assumed on ’b’”. This

includes the type of the variable (as in Quasar, the type specification is nothing more than a predicate).

a : int

assert(0 <= a && a < 1)

b : ??

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 116

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

8.6. META FUNCTIONS Chapter 8

assert($subs(a=b,$assump(a)))

print $str($assump(b)) % Prints "type(b,"int")) && 0 <= b && b < 1"

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 117

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 9

Chapter

9

GPU hardware features

The GPU was originally designed for computer graphics and there are a lot of other facilities available to speed up

GPU applications. In this Section, we describe a number of advanced GPU techniques from which Quasar programs

can also potentially benefit. In this section, we describe several GPU specific optimization techniques that can easily

be used from Quasar programs.

9.1 Constant memory and texture memory

The GPU hardware provides several caches or memory types that are designed for dealing with (partially) constant

data:

• Constant memory: NVIDIA GPUs provide 64KB of constant memory that is treated differently from

standard global memory. In some situations, using constant memory instead of global memory may reduce

the memory bandwidth (which is beneficial for kernels). Constant memory is also most effective when all

threads access the same value at the same time (i.e. the array index is not a function of the position).

• Texture memory: texture memory is yet another type of read-only memory. Like constant memory, texture

memory is cached on chip, so it may provide higher effective bandwidth than obtained when accessing the

off-chip DRAM. In particular, texture caches are designed for memory access patterns exhibiting a great deal

of spatial locality.

For practical purposes, the size of the constant memory is rather small, so it is mostly useful for storing filter/weight

coefficients that do not change while the kernel is executed. On the other hand, the texture memory is quite large,

has its own cache, and can be used for storing constant input signals/images.

In Quasar, constant/texture memory can be utilized by adding modifiers to the kernel function parameter types.

The following modifiers are available (see table 9.1):

• ’hwconst: the vector/matrix needs to be stored in the constant memory. Note: if there is not enough constant

memory available, a run-time error is generated!

• ’hwtex_nearest or ’hwtex_linear: the vector/matrix/cube needs to be stored in the texture memory (see

further, in section 9.3). Up to 3-dimensional data structures (cubes) are supported.

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 118

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.1. CONSTANT MEMORY AND TEXTURE MEMORY Chapter 9

Table 9.1: Overview of access modifiers controlling the GPU hardware texturing unit

Modifier Purpose

’hwconst The data needs to be stored in constant memory (max 64KB). Implies ’const
’hwtex nearest Store the vector/matrix/cube in the GPU texture memory, use nearest neighbor lookup
’hwtex linear Store the vector/matrix/cube in the GPU texture memory, use linear interpolation
’hwtex const Does not store the data in the GPU texture memory, but instead uses

the non-coherent L2-cache of the GPU when accessing the data

• ’hwtex_const - non-coherent texture cache. This option requires CUDA compute architecture 3.5 or higher

- as in Geforce GPUs of the 900 series, and allows the data still be stored in the global memory, will utilizing

the texture cache for load operations. This combines the advantages of the texture memory cache with the

flexibility (ability to read/write) of the global memory.

Note that because of the different access mechanism, these modifiers cannot be combined.

For Fermi and later devices, global memory accesses (i.e., without ’hw* modifiers) are cached in the L2-cache of the

GPU. For Kepler GPU devices, using ’hwtex_const the texture cache is utilized directly, bypassing the L2 cache.

The texture cache is a separate cache with a separate memory pipeline and relaxed memory coalescing rules, which

may bring advantages to bandwidth-limited kernels.1

Starting with Maxwell GPU devices, the L1 cache and the texture caches are unified. The unified L1/texture cache

coalesces the memory accesses, gathering up the data requested by the threads in a warp, before delivering the data

to the warp.2

For using constant memory, we give the following guidelines:

• When your kernel function is using some constant vectors (weight vectors with relatively small length), and

when all threads (or more specifically, all threads within one warp) access the same value of the vector at the

same time (the index is not a function of the position!), you should definitely consider using ’hwconst. In case

different constant vector elements are accessed from different threads, the constant cache must be accessed

multiple times, which degrades the performance.

• When your kernel function is accessing constant images (vec, mat or cube) on Kepler/Maxwell devices with

compute architecture >= 3.5, it may be worthful to use ’hwtex_const.

However, the best is to investigate whether the modifier improves the performance (e.g. using the Quasar profiler).

Example Consider the following convolution program:

Default version with no constant memory being used:

function [] = __kernel__ kernel(x : vec, y : vec, f : vec, pos : int)

sum = 0.0

for i=0..numel(f)-1

sum += x[pos+i] * f[i]

endfor

y[pos] = sum

endfunction

Version with constant memory:

1For more information, see Kepler tuning guide.
2For more information, see Maxwell tuning guide.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 119

http://docs.nvidia.com/cuda/kepler-tuning-guide/#read-only-data-cache
http://docs.nvidia.com/cuda/maxwell-tuning-guide/#l1-cache
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.1. CONSTANT MEMORY AND TEXTURE MEMORY Chapter 9

function [] = __kernel__ kernel_hwconst(x : vec, y : vec, f : vec'hwconst, pos : int)

sum = 0.0

for i=0..numel(f)-1

sum += x[pos+i] * f[i]

endfor

y[pos] = sum

endfunction

Version with constant texture memory for f:

function [] = __kernel__ kernel_hwtex_const(x : vec, y : vec, f : vec'hwtex_const, pos : int)

sum = 0.0

for i=0..numel(f)-1

sum += x[pos+i] * f[i]

endfor

y[pos] = sum

endfunction

Version with constant texture memory for x and f:

function [] = __kernel__ kernel_hwtex_const2(x : vec'hwtex_const, y : vec, f : vec'hwtex_const, pos :
int)

sum = 0.0

for i=0..numel(f)-1

sum += x[pos+i] * f[i]

endfor

y[pos] = sum

endfunction

Version with HW textures (see section 9.3):

function [] = __kernel__ kernel_tex(x : vec, y : vec, f : vec'hwtex_nearest, pos : int)

sum = 0.0

for i=0..numel(f)-1

sum += x[pos+i] * f[i]

endfor

y[pos] = sum

endfunction

For 100 runs on vectors of size 20482, with 32 filter coefficients, we obtain the following results for the NVidia

Geforce 980 (Maxwell architecture):

Default: 513.0294 ms

f: 'hwconst: 132.0075 ms

f: 'hwtex_const: 128.0074 ms

x,f: 'hwtex_const: 95.005 ms

f: 'hwtex_nearest: 169.0096 ms

It can be seen that using constant memory (’hwconst) alone yields a speed-up of almost a factor 5 in this case.

The best performance is obtained with hwtex_const. Moreover, using shared memory (see section §10.5), the

performance can even further be improved to 85 ms.

Performance tip: use ’hwconst when all threads in a kernel access the same memory location simultaneously

(for example, filter coefficients in a linear filter). When to use ’hwtex_nearest versus ’hwtex_const, depends

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 120

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.2. SHARED MEMORY DESIGNATORS Chapter 9

on the way the data is reused (whether the matrix is readonly or needs to be copied often between the global

memory and the texture memory): when the matrix is readonly and the access pattern is localized (e.g., a local

window operation) or in combination with boundary access methods as ’safe, ’mirror, ’circular, ’clamped, it

may be beneficial to use ’hwtex_nearest. When the matrix access pattern is random, a better choice might be

’hwtex_const. But as advice gives a worse performance in the above example, it is best to profile in order to be

sure.

9.2 Shared memory designators

Shared memory designators provide a convenient approach to fetch blocks of data from global memory into shared

memory of the GPU as well as a mechanism to write back the data.

As mentioned before in section 2.4.4, shared memory is best used whenever possible to relieve stress on the global

memory and the most common use is in a memory mapping technique (similar to DMA): a portion of the data is

mapped onto the shared memory. Local updates are later to be written back to the global memory. Different from

a cache is that the layout of the shared memory is fully controlled: each array element is mapped onto a specified

array element in the global memory. To facilitate the use of shared memory (in particular, the error-prone copying

of data from and to shared memory), shared memory designators have been added to Quasar.

Shared memory designators thus provide a novel complementary technique to the shared() function to allocate

and update shared memory. A shared memory designator is specified using the 'shared access modifier as follows:

function [] = __kernel__ kernel(A : mat, a : scalar, b : scalar, pos : ivec3)

B : 'shared = transpose(a*A[0..9, 0..9]+b) % fetch

% ... calculations using B (e.g., directly with the indices)

A[0..9, 0..9] = transpose(B) % store

endfunction

The designator 'shared tells the compiler that this variable is intended to be stored in shared memory of the GPU.

However, rather than one thread calculating eye(17), the compiler will generate code such that the calculations

are distributed over the threads within the block. For this purpose, the compiler detects “thread-invariant” code

related to the designated shared memory variables and modifies the code such that it is distributed over the threads,

followed by the necessary thread synchronization.

For the above example, this will generate the following code:

function [] = __kernel__ kernel(A:mat,a:scalar,b:scalar,pos:ivec3,this_thread_block:thread_block)

B=shared(10,10)

for i=this_thread_block.thread_idx..this_thread_block.size..99

[k01,k11]=ind2pos([10,10],i)

B[k01,k11]=a*A[k11,k01]+b

endfor

this_thread_block.sync()

for $i=this_thread_block.thread_idx..this_thread_block.size..99

[k00,k10]=ind2pos([10,10],i)

A[k00,k10]=B[k10,k00]

endfor

endfunction

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 121

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.2. SHARED MEMORY DESIGNATORS Chapter 9

Note that the code using shared memory designators is significantly easier to understand, compared to the above

code with low-level threading and synchronization primitives. It becomes then straightforward to speed up existing

algorithms.

The shared memory designator technique relies on:

1. vector/matrix size inference: the compiler can determine that size (transpose(a∗A[0..9, 0..9]+b))==[10,10], so

that the appropriate amount of shared memory can be allocated

2. cooperative groups (see 9.8): this thread block allows access to the low-level block functionality (size, position,

thread index etc.)

The shared() and shared zeros() functions exist as alternative, as a low-level interface to the shared memory. Sum-

marizing, the differences are:

shared() : ’shared

Type “Low” level “High” level

Syntax S=shared(sz) S:’shared=uninit(sz)

Thread distribution manual automatic

Use in kernel function Yes Yes

Use in device function No No

Use in for-loop No Yes

See the matrix example below for an example of how to use the shared memory designators from a for-loop.

9.2.1 How to use

When a variable is declared with the shared designator : 'shared, the compiler will scan for several patterns related

to the variable

1. Initialization uninit(): the standard way to initialize shared variables is

S : 'shared = uninit(M,N,K)

The full type information of S (e.g., cube'shared) is omitted here since the compiler can obtained it via type

inference. The above is the equivalent of S = shared(M,N,K), however S : 'shared = uninit(M,N,K) allows to

compiler to manage the shared memory accesses.

As is the case with shared() it is best that the parameters M,N,K are either constant (declared using : int 'const,

or a type parameter of a generic function), or that upper bounds on M∗N∗K are given via an assertion (e.g.,)

assert (M∗N∗K<=512)). This way, the compiler can calculate the amount of shared memory that is required

for the kernel function execution.

2. Fetch and broadbast :

Instead of initializing with uninit() it is possible to initialize directly with an expression, for example:

S1 : 'shared = transpose(a*A[0..9, 0..5]+b)

S2 : 'shared = img[p[0]+(-c..16+c),p[1]+(-c..16+c),:]

S3 : 'shared = sum(reshape(img,[M,numel(img)/M]),1)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 122

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.2. SHARED MEMORY DESIGNATORS Chapter 9

Instead of every thread calculating duplicate results (as would have been the case without using 'shared), the

calculations are distributed over the threads within the thread block. In other words, the compiler will do the

heavy work and generate code using the block parameters blkpos, blkdim (see before). After the operation, a

thread synchronization (syncthreads) will implicitly be performed.

This initialization-by-expression can also be seen as a fetch and broadcast: first the memory is copied from

global memory to shared memory (with possibly some intermediate calculations), next once in shared memory,

the data is available to all threads (after syncthreads).

Through type inference, the compiler can determine the dimensions of S1, S2 and S3. For example, in the first

case, the compiler will determine S1 : mat'shared(6,10).

3. Gather and store: process and copy back to global memory

Using the same technique as with fetch and broadcast, the data stored in shared memory can be written back

to the global memory:

A[0..9, 0..9] = transpose(S1)

B[0..sz[0]-1, (0..sz[1]-1)] = S2

Again, the calculations are distributed over the individual threads.

1. Shared calculation

This pattern incurs a loop over the shared variable, as in the following example:

Sb : 'shared = uninit(M)

for L=0..M-1

D = diagonal(cholesky(Sa[L,0..3,0..3]))

Sb[L] = log_PP + 2*sum(log(D))

endfor

Again, instead of every thread performing the entire loop, the loop will be distributed over the thread block.

This allows for some calculation of temporary variables for which the results are shared over the entire thread

block. The approach is similar to fetch and broadcast with the difference that the loop to initialize the shared

variable is explicitly written out.

2. Parallel reduction

This pattern is currently experimental, but the idea is to expand aggregation operations into a parallel

reduction algorithm, as in the following example:

{!parallel for; blkdim=M}

for n=0..N-1

B : 'shared = uninit(M)

B[n] = ...

syncthreads

total = sum(B)

endfor

Notice the calculation of total, via the sum function. Rather than every thread computing total independently,

the calculation can again be distributed over the thread block. This technique provides a simple parallel

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 123

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.2. SHARED MEMORY DESIGNATORS Chapter 9

reduction primitive.

Currently, only the functions sum, prod, mean, min and max with one parameter are supported.

9.2.2 Virtual blocks and overriding the dependency analysis

To distinguish calculations that are position-dependent from calculations that can be shared within the thread block,

the compiler performs a dependency analysis: it starts from the pos kernel function parameter and then determines

the variables that are dependent of pos. Once the calculation of a variable depends on pos, the calculation can not

be distributed any more over the thread block - the result of the calculation needs to be different for each thread.

In some cases, it is desirable to override the dependency analysis. For example, the virtual block technique defines

tiles with size that is independent of the GPU architecture. The mapping onto GPU blocks is then implicitly

handled by the compiler.

N : int'const = 16 % virtual block size

{!parallel for; blkdim=[N,N]}

for m=0..size(A,0)-1

for n=0..size(A,1)-1

mp = int(m/N)

np = int(n/N)

Ap = A[mp,Np]

endfor

endfor

Here, the values mp and np are constant within each thread block, however by the specific way that the variables mp

and np are calculated via modulo operation on the position indices m and n, the compiler cannot (yet) determine

the constantness within the thread block. The following code attribute (to be placed inside the inner for loop or

kernel function) indicates that, irrespective of the indexing, the variable Ap are constant over the thread block:

{!shared_mem_promotion assume_blk_constant={Ap}}

In the above example, the virtual block size and the GPU block size are fixed via {! parallel for ; blkdim=[N,N]},
but this does not necessarily have to be this way. It is up to the programmer to indicate that variables are constant

within the thread block.

In the future, “virtual blocks” which size differs from the GPU blocks may be implemented using collaborative

thread groups.

9.2.3 Examples

In this section, we discuss three example use cases of shared memory designators: image histograms, image separable

filtering and parallel reduction.

9.2.3.1 Histogram

The calculation of a histogram is a good use case of the shared memory designators:

function [] = __kernel__ hist_kernel[Bins](im : vec, hist : vec(Bins), pos : int)

hist_sh : 'shared = zeros(Bins)

for m=pos..16384..numel(im)-1

hist_sh[int(im[m])] += 1

endfor

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 124

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.2. SHARED MEMORY DESIGNATORS Chapter 9

hist[:] += hist_sh % add the result

endfunction

First, the histogram “scratchpad” is allocated in shared memory and initialized with zeros. Here the size of the

histogram is a generic parameter, which guarantees that the compiler always has the exact size of the histogram.

In the second step, the image is traversed using a so called “grid-strided loop”. This is to ensure that the histogram

can be updated several times by the same thread before the results are written to the histogram in global memory,

thereby reducing the number of shared to global memory copies. As a final step, the local histogram is added to

the global histogram.

A more simple way to implement hist kernel would have been to not use shared memory at all,

as in the following kernel:

function [] = __kernel__ hist_kernel_global(im : vec, hist : vec, pos : int)

hist[int(im[pos])] += 1

endfunction

A previous implementation technique in Quasar, via the sharedmemcaching kernel transform, is now deprecated in

favor of designated shared memory, which yields not only more easily readable code but is also more flexible in its

use.

function y : vec'unchecked = hist_sharedmemcaching(im)

y = zeros(256)

{!parallel for}

for m=0..size(im,0)-1

for n=0..size(im,1)-1

for k=0..size(im,2)-1

{!kernel_transform enable="sharedmemcaching"}

{!kernel_arg name=y; type="inout"; access="shared"; op="+="; cache_slices=y[:]; numel
=256}

v = im[m,n,k]

y[v] += 1

endfor

endfor

endfor

endfunction

On a Geforce GTX 980 GPU, the results are as follows:

Kernel function Execution time for 100 runs on a 512x512 image

hist kernel 12.765 ms

hist kernel global 73.7107 ms

hist sharedmemcaching 28.5985 ms

The shared memory technique gives a speed-up of a factor 5.6x! It is even outperforms the shared mem caching

transform by a factor 2x!.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 125

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.2. SHARED MEMORY DESIGNATORS Chapter 9

9.2.3.2 Separable linear filtering

In this example, an implementation of separable linear filtering is given. Each block of the input image, including

some border that depends on the filter length, is transferred to the shared memory.

function img_out = separable_linear_filtering[c : int](img_in : cube(:,:,3), fc : vec'hwconst(2*c+1))

function [] = __kernel__ kernel(img_out : cube(:,:,3), pos : ivec2)

p = pos - mod(pos, 16)

s1 : 'shared = img_in[p[0]+(-c..16+c),p[1]+(-c..16+c),:]

s2 : 'shared = uninit(16+2*c+1,16,3)

% work shared along the threads

for m=0..16+2*c

for n=0..15

total = zeros(3)

for k=0..numel(fc)-1

total += fc[k] * s1[m,n+k,:]

endfor

s2[m,n,:] = total

endfor

endfor

total1 = zeros(3)

[m1,n1] = pos-p

for k=0..numel(fc)-1

total1 += fc[k] * s2[m1+k,n1,:]

endfor

img_out[pos[0],pos[1],:] = total1

endfunction

img_out = uninit(size(img_in))

parallel_do([size(img_in,0..1),[16,16]],img_out, kernel)

endfunction

For the first, horizontal filtering stage, there are more output pixels to be computed than there are threads in each

block (in particular, for filter length 2∗c+1 and block size 16x16, there are 16x(16+2∗c+1) output pixels). Using the

shared memory designators, these calculations are also distributed over the thread block. For example, for c=4,

this will yield 256+144=384, corresponding to 12.5 warps. The result of the first filtering stage is stored in shared

memory.

The second, vertical filtering stage takes inputs from the previous stage stored in shared memory. The result is

written back to the global memory.

Note that the function is parametrized on the half-filter length c. This way, the number of loop iterations for 0..16+2∗

c, as well as numel(fc) can be computed at compile-time. The compiler also manages to calculate the amount of

shared memory required to execute this kernel (6348 bytes for s1 and 4416 bytes for s2 in single precision floating

point mode).

9.2.3.3 Parallel reduction (sum of NxN matrices)

Below is an example of a parallel reduction algorithm rewritten to take advantage of shared memory designators.

Although the advantages of this particular implementation are limited compared to the low-level shared() function,

the implementation is given for completeness.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 126

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.3. SPEEDING UP SPATIAL DATA ACCESS USING HARDWARE TEXTURING UNITS Chapter 9

function [y] = red(im : cube)

M : int'const = 512 % block size

N : int'const = 8*M % number of blocks times block size

y = 0.0

{!parallel for; blkdim=M} % Explicitly set the block size

for n=0..N-1

B : 'shared = uninit(M) % Shared entry for each thread

% Calculate partial sum and store in B

total = 0.0

for k=n..N..numel(im)-1

total += im[ind2pos(size(im),k)]

endfor

B[mod(k,M)] = total

syncthreads

% Sum over the shared memory - parallel reduction

total = sum(B)

if mod(n,M)==0

y += total % Sum intermediate results

endif

endfor

endfunction

9.3 Speeding up spatial data access using Hardware Texturing Units

The hardware texturing units are a part of the graphics-accelerating heritage of the GPU. Originally, texture

mapping was designed to enable realistically looking objects by letting the applications “paint” onto the geometry.

From the rendered triangles, texture coordinates were interpolated along the X, Y and Z coordinates, such that for

every output pixel, a texture value could be fetched (e.g. using nearest-neighbor or linear/trilinear interpolation).

Later, programmable graphics and non-color like texture data (e.g. bump maps, shadow maps) were introduced

and also the graphics hardware became more sophisticated. The hardware performance was improved by using

dedicated hardware for transforming texture coordinates into hardware addresses, by adding texture caches and by

using memory layouts optimized for spatial locality.

There is also hardware support for some of the type modifiers explained in section 2.4, in particular “safe”,

“circular”, “mirror” and “clamped”.

More generally, in Quasar, there are two main use cases for textures:

• The first is to use the texture for more optimized spatial data access: as an alternative for coalescing, to use

the texture cache to reduce bandwidth requirements, ...

• The second is to make use of the fixed-function hardware that was originally intended for graphics applications:

– The use of boundary conditions (“safe”, “circular”, “mirror” and “clamped”)

– The automatic conversion of integer values to floating point

– The automatic conversion of 2D and 3D indices to addresses

– Linear interpolation of 2D and 3D data.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 127

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.3. SPEEDING UP SPATIAL DATA ACCESS USING HARDWARE TEXTURING UNITS Chapter 9

Limitation CUDA 2.x value

Maximum length for 1D texture 134217728
Maximum size for 2D texture 65536×65536
Maximum size for 3D texture 2048× 2048× 2048

Allowed element types scalar, int, int8, int16, int32
uint8, uint16, uint32

Access type locally read-only, changes visible in next
kernel function call

Access modifiers safe, circular, mirror and clamped

(no checked/unchecked)
Maximum number of textures/Quasar module 128 (or 256)

Table 9.4: Texture memory limitations

The hardware texture units can only be used in combination with texture memory. Texture memory is a read-only

part of the global memory (see section 2.4.3), that is cached on-chip (e.g. 6-8 KB per multi-processor) and ordered

using a space-filling curve optimized for spatial locality.

In table 9.4 there are a number of limitations listed for texture memory.

Using the hardware texture units in Quasar is quite simple: it suffices to add the following special modifiers to the

types of arguments of kernel functions:

• ’hwtex_nearest: use the hardware texturing unit in nearest interpolation mode for the specified argument

• ’hwtex_linear: use the hardware texturing unit in linear interpolation mode for the specified argument

Note that these modifiers are only permitted to vec, mat or cube types. Complex-valued data or higher dimensional

matrices are currently not yet supported.

The following image scaling example illustrates the use of hardware textures:

% Kernel function, not using hardware textures

function [] = __kernel__ interpolate_nonhwtex (y:mat, x:mat, scale:scalar, pos:ivec2)

scaled_pos = scale * pos

f = frac(scaled_pos)

i = int(floor(scaled_pos))

y[pos] = (1 - f[0]) * (1 - f[1]) * x[i[0], i[1]] +

f[0] * (1 - f[1]) * x[i[0]+1, i[1]] +

(1 - f[0]) * f[1] * x[i[0], i[1]+1] +

f[0] * f[1] * x[i[0]+1, i[1]+1]

endfunction

% Kernel function, using hardware textures

function [] = __kernel__ interpolate_hwtex (y:mat, x:mat'hwtex_linear,

scale:scalar, pos:ivec2)

y[pos] = x[scale * pos]

endfunction

Note that the use of the hardware textures (and in particular the linear interpolation) is quite simple. However, it

is important to stress that the hwtex modifiers can only be used for kernel function arguments. It is for example

not possible to declare variables using these modifiers (if you try so, the modifiers will not have any effect).

The hardware textures enable some performance benefit. For example, on a Geforce 435M, for the above program

the following results were obtained:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 128

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.4. 16-BIT (HALF-PRECISION) FLOATING POINT TEXTURES Chapter 9

2D nearest neighbor interpolation without hardware texturing: 109.2002 msec

2D nearest neighbor interpolation with hardware texturing: 93.6002 msec

3D nearest neighbor interpolation without hardware texturing: 421.2007 msec

3D nearest neighbor interpolation with hardware texturing: 312.0006 msec

2D Linear interpolation without hardware texturing: 156.0003 msec

2D Linear interpolation with hardware texturing: 109.2002 msec

3D Linear interpolation without hardware texturing: 873.6015 msec

3D Linear interpolation with hardware texturing: 312.0006 msec

Especially, in 3D with linear interpolation, the performance is almost 3x higher than the regular approach. Textures

have also a number of limitations:

• For non-floating point textures, the texture width should be a multiple of 32. Otherwise a run-time error will

be generated. Note: for regular floating point textures there is no such limitation.

• The maximum size of the texture is limited (but increasing with newer GPU generations). The maximum size

is typically 65536× 65536 (2D) or 4096× 4096× 4096 (3D).

• The element types are restricted.

• It is possible to write to texture memory from a kernel function (see section §9.6), but the effects are only

visible in a next kernel function call.

• Textures cannot be used inside nested kernel functions (see section §4.4).

• The boundary condition ’checked cannot be used in combination with hardware textures.

Summarizing, hardware textures have the following advantages:

1. Texture memory is cached, this is helpful when global memory is the main bottleneck.

2. Texture memory is efficient also for less regular access patterns

3. Supports linear/bilinear and trilinear interpolation in hardware

4. Supports boundary accessing modes (mirror, circular, clamped and safe) in hardware.

9.4 16-bit (half-precision) floating point textures

To reduce the bandwidth in computation heavy applications (e.g. real-time video processing), it is possible to specify

that the GPU texturing unit should use 16-bit floating point formats. This can be configured on a global level in

Redshift / Program Settings / Runtime / Use CUDA 16-bit floating point textures. Obviously, this will reduce the

memory bandwidth by a factor of 2 in 32-bit float precision mode, and by a factor of 4 in 64-bit float precision

mode. The option is also particularly useful when visualizing multiple large images.

Note that 16-bit floating point numbers have some limitations. The minimal positive non-zero value is 5.96046448e-

08. The maximal value is 65504. Integers between -2047 and 2047 can be exactly represented. The machine precision

(eps) value is 0.00097656. For these reasons, 16-bit floating point textures should not be used for accuracy sensitive

parts of the algorithm. They are useful for rendering and visualization purposes (e.g., real-time video processing).

Currently, 16-bit precision is only available for textures (and not for non-texture arrays), however, the support for

16-bit floating point arrays will be added in a future version of Quasar.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 129

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.5. MULTI-COMPONENT HARDWARE TEXTURES Chapter 9

9.5 Multi-component Hardware Textures

Very often, kernel functions access RGB color data using slicing operations, such as:

x[m,n,0..2]

When the accesses m and/or n are irregular compared to the kernel function position variable pos, it may be

useful to consider the use of multi-component hardware textures. These textures allow fetches of 2, 3 or 4 color

components in one single operation, which is very efficient. A multi-component hardware texture can be declared

by adding ’hwtex_nearest(4) to the access modifier of the cube type. The modifier is only permitted to mat,

cube or cube{4} types. Complex-valued data or higher dimensional matrices are currently not yet supported. An

example of a Gaussian filter employing multi-component textures is given below:

function y = gaussian_filter_hor(x, fc, n)

function [] = __kernel__ kernel(x : cube'hwtex_nearest(4), y : cube'unchecked, fc : vec'unchecked,
n : int, pos : vec2)

sum = [0.,0.,0.]

for i=0..numel(fc)-1

sum = sum + x[pos[0],pos[1]+i-n,0..2] * fc[i]

endfor

y[pos[0],pos[1],0..2] = sum

endfunction

y = uninit(size(x))

parallel_do (size(y,0..1), x, y, fc, n, kernel)

endfunction

In parentheses, the number of components is indicated. Note that the hardware only supports 1, 2 or 4 components.

In this mode, the Quasar compiler will support the texture fetching operation

x[pos[0],pos[1]+i-n,0..2]

and will translate the slice indexer into a 4-component texture fetch.

In combination with 16-bit floating point formats, the texture fetch even only requires a transfer of 64 bits (8 bytes)

from the texture memory. On average, this will reduce the memory bandwidth by a factor 2 and at the same time

reduces the stress on the global memory.

Finally, it is best to not use the same matrix value in ’hwtex_nearest(4) mode and later in ’hwtex_nearest mode

(or vice versa) in another kernel function, because a mode change requires the texture memory to be reallocated

and recopied (which affects the performance).

9.6 Texture/surface writes

For CUDA devices with compute capability 2.0 or higher, it is possible to write to the texture memory from a kernel

function. In CUDA terminology, this is called a surface write. In Quasar, it suffices to declare the kernel function

parameter using the modifier ’hwtex_nearest (or ’hwtex_nearest(n)) and to write to the corresponding matrix.

One caveat is that the texture write is only visible starting from the next kernel function call. Consider the following

example:

function [] = __kernel__ kernel (y: mat'hwtex_nearest, pos : ivec2)

y[pos] = y[pos] + 1

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 130

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.7. MAXIMIZING OCCUPANCY THROUGH SHARED MEMORY ASSERTIONS Chapter 9

y[pos] = y[pos] + 1 % unseen change

endfunction

y = zeros(64,64)

parallel_do(size(y),y,kernel)

parallel_do(size(y),y,kernel)

print mean(y) % Result is 2 (instead of 4) because the surface writes

% are not visible until the next call

This may be counterintuitive, but this allows the texture cache to work properly.

An example with 4 component surface writes is given below (one stage of a wavelet transform in the vertical

direction):

function [] = __kernel__ dwt_dim0_hwtex4(x : cube'hwtex_nearest(4), y : cube'hwtex_nearest(4), wc :
mat'hwconst, ctd : int, n : int, pos : ivec2)

K = 16*n + ctd

a = [0.0,0.0,0.0,0.0]

b = [0.0,0.0,0.0,0.0]

tilepos = int((2*pos[0])/n)

j0 = tilepos*n

for k=0..15

j = j0+mod(2*pos[0]+k+K,n)

u = x[j,pos[1],0..3]

a = a + wc[0,k] * u

b = b + wc[1,k] * u

endfor

y[j0+mod(pos[0],int(n/2)), pos[1],0..3]=a

y[j0+int(n/2)+mod(pos[0],int(n/2)),pos[1],0..3]=b

endfunction

im = imread("lena_big.tif")

im_out = uninit(size(im))

parallel_do([size(im_out,0)/2,size(im_out,1)],im2,im_out,sym8,4,size(im_out,0), dwt_dim0_hwtex4)

On a Geforce GTX 780M, the computation times for 1000 runs are as follows:

without 'hwtex_nearest(4): 513 ms

with 'hwtex_nearest(4): 176 ms

Here this optimization resulted in a speedup of approx. a factor 3 (!)

9.7 Maximizing occupancy through shared memory assertions

Kernel functions that explicitly use shared memory can be optimized by specifying the amount of memory that a

kernel function will actually use.

The maximum amount of shared memory that Quasar kernel functions can currently use is 32K (32768 bytes).

Actually, the maximum amount of shared memory of the device is 48K (16K is reserved for internal purposes). The

GPU may process several blocks at the same time, however there is one important restriction:

“The total number of blocks that can be processed at the same time also depends on the amount of shared

memory that is used by each block.”

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 131

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.8. COOPERATIVE GROUPS AND WARP SHUFFLING FUNCTIONS Chapter 9

For example, if one block uses 32K, then it is not possible to launch a second block at the same time, because 2 x

32K>48K. In practice, your kernel function may only use e.g. 4K instead of 32K. This would then allow 48K/4K

= 12 blocks to be processed at the same time.

When the amount of shared memory used by a kernel can not be deduced from the code, the Quasar runtime will

assume that the kernel uses 32K shared memory per block. However, because N*32K < 48K requires N=1, only one

block can be launched simultaneously. This significantly degrades the performance. Therefore it is recommended

that you give some hints to the compiler about the amount of shared memory that the kernel function will use.

This can be done as follows:

1. Explicitly giving the dimensions of the shared memory arrays

When you request:

x = shared(20,3,6)

the compiler will reserve 20 x 3 x 6 x 4 bytes = 1440 bytes for the kernel function.

2. Using assertions

Often the arguments of the function shared are non-constant. In this case you can use assertions. The Quasar

compiler can then infer the total amount of shared memory that is being used through the logic system (see

5).

assert(M<8 && N<20 && K<4)

x = shared(M,N,K)

Due to the above assertion, the compiler is able to infer the amount of required shared memory. In this case:

8 x 20 x 4 x 4 bytes = 2560 bytes. The compiler then gives the following message:

Information: sharedmemtest.q - line 17: Calculated an upper bound for the amount of shared
memory: 2560 bytes

Assertions have also an additional benefit: they allow the runtime system to check whether not too much shared

memory will be allocated. In case N would exceed 20, the runtime system will give an error message.

9.8 Cooperative groups and warp shuffling functions

The following special kernel function parameters give fine grain control over GPU threads.

Parameter Type Description

coalesced_threads thread_block a thread block of coalesced threads

this_thread_block thread_block describes the current thread block

this_grid thread_block describes the current grid

this_multi_grid thread_block describes the current multi-GPU grid

The thread_block class has the following properties:

Property Description

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 132

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.8. COOPERATIVE GROUPS AND WARP SHUFFLING FUNCTIONS Chapter 9

Property Description

thread_idx Gives the index of the current thread within a thread block

size Indicates the size (number of threads) of the thread block

active_mask Gives the mask of the threads that are currently active

The thread_block class has the following methods.

Method Description

sync() Synchronizes all threads within the thread block

partition(size : int) Allows partitioning a thread block into smaller blocks

shfl(var, src_thread_idx : int) Direct copy from another thread

shfl_up(var, delta : int) Direct copy from another thread, with index specified relatively

shfl_down(var, delta : int) Direct copy from another thread, with index specified relatively

shfl_xor(var, mask : int) Direct copy from another thread, with index specified by a XOR relative to the

current thread index
all(predicate) Returns true if the predicate for all threads within the thread block evaluates to

non-zero
any(predicate) Returns true if the predicate for any thread within the thread block evaluates to

non-zero
ballot(predicate) Evaluates the predicate for all threads within the thread block and returns a mask

where every bit corresponds to one predicate from one thread
match_any(value) Returns a mask of all threads that have the same value

match_all(value) Returns a mask only if all threads that share the same value, otherwise returns 0.

In principle, the above functions allow threads to communicate with each other, without relying on, e.g., shared

memory. The warp shuffle operations allow taking values from other active threads (active means not disabled due

to thread divergence). all, any, ballot, match_any and match_all allow to determine whether the threads have

reached a given state.

The warp shuffle operations require a Kepler GPU (or higher) and allow the use of shared memory to be avoided

(register access is faster than shared memory). This may bring again performance benefits for computationally

intensive kernels such as convolutions and parallel reductions (sum, min, max, prod etc.).

Using this functionality will require the CUDA target to be specified explicitly (i.e., the functionality cannot be

easily simulated by the CPU). This may be obtained by placing the following code attribute (see section §4.11)

inside the kernel:

{!kernel target="nvidia_cuda"}

. For CPU execution a separate kernel needs to be written.

Below an example is given for a parallel reduction algorithm based on warp shuffling functions. This is an alternative

to the parallel reduction algorithm using shared memory (section 10.6) and has the advantage that no shared memory

is used.

function y : scalar = __kernel__ reduce_sum(coalesced_threads : thread_block, x : vec, pos : int)

{!kernel target="nvidia_cuda"}

val = x[pos]

lane = coalesced_threads.thread_idx

i = int(coalesced_threads.size / 2)

val = x[pos]

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 133

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.8. COOPERATIVE GROUPS AND WARP SHUFFLING FUNCTIONS Chapter 9

% accumulate within the warp

while i > 0

val += coalesced_threads.shfl_down(val, i)

i /= 2

endwhile

if lane==0

y += val

endif

endfunction

In case the warp size is known to be 32, this can be even written as follows:

function y : scalar = __kernel__ reduce_sum(coalesced_threads : thread_block, x : vec, pos : int)

{!kernel target="nvidia_cuda"}

val = x[pos]

lane = coalesced_threads.thread_idx

% accumulate within the warp (of fixed size 32)

val += coalesced_threads.shfl_down(val, 16)

val += coalesced_threads.shfl_down(val, 8)

val += coalesced_threads.shfl_down(val, 4)

val += coalesced_threads.shfl_down(val, 2)

val += coalesced_threads.shfl_down(val, 1)

if lane==0

y += val

endif

endfunction

9.8.1 Fine synchronization granularity

As an extension of the cooperative groups, the keyword syncthreads accepts a parameter that indicates which

threads are being synchronized. This allows more fine grain control on the synchronization.

Keyword Description

syncthreads(warp) performs synchronization across the current (possibly diverged) warp (32 threads)

syncthreads(block) performs synchronization across the current block

syncthreads(grid) performs synchronization across the entire grid

syncthreads(multi_grid) performs synchronization across the entire multi-grid (multi-GPU)

syncthreads(host) synchronizes all host (CPU and GPU threads)

The first statement syncthreads(warp) allows divergent threads to synchronize at any time (it is also useful in

the context of Volta’s independent scheduling). syncthreads(block) is equivalent to syncthreads. The grid

synchronization primitive syncthreads(grid) is allows to place barriers inside kernel function that synchronize all

blocks. The following function:

function y = gaussian_filter_separable(x, fc, n)

function [] = __kernel__ gaussian_filter_hor(x : cube, y : cube, fc : vec, n : int, pos : vec3)

sum = 0.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 134

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.8. COOPERATIVE GROUPS AND WARP SHUFFLING FUNCTIONS Chapter 9

for i=0..numel(fc)-1

sum = sum + x[pos + [0,i-n,0]] * fc[i]

endfor

y[pos] = sum

endfunction

function [] = __kernel__ gaussian_filter_ver(x : cube, y : cube, fc : vec, n : int, pos : vec3)

sum = 0.

for i=0..numel(fc)-1

sum = sum + x[pos + [i-n,0,0]] * fc[i]

endfor

y[pos] = sum

endfunction

z = uninit(size(x))

y = uninit(size(x))

parallel_do (size(y), x, z, fc, n, gaussian_filter_hor)

parallel_do (size(y), z, y, fc, n, gaussian_filter_ver)

endfunction

Can now be simplified to:

function y = gaussian_filter_separable(x, fc, n)

function [] = __kernel__ gaussian_filter_separable(x : cube, y : cube, z : cube, fc : vec, n : int
, pos : vec3)

sum = 0.

for i=0..numel(fc)-1

sum = sum + x[pos + [0,i-n,0]] * fc[i]

endfor

z[pos] = sum

syncthreads(grid)

sum = 0.

for i=0..numel(fc)-1

sum = sum + z[pos + [i-n,0,0]] * fc[i]

endfor

y[pos] = sum

endfunction

z = uninit(size(x))

y = uninit(size(x))

parallel_do (size(y), x, y, z, fc, n, gaussian_filter_separable)

endfunction

The advantage is not only in the improved readability of the code, but the number of kernel function calls can be

reduced which further increases the performance. Note: this feature requires at least an NVIDIA Pascal GPU.

There are a few caveats with grid synchronization:

• The number of active blocks should be less or equal than the total number of blocks that the GPU can process

in parallel. This is to ensure that all active blocks can reach the grid barrier at the same time.

• The values of locally declared variables (such as sum in the above example) are not preserved across grid

barriers and need to be reinitialized.

The Quasar compiler enforces these conditions automatically. However, in case manual control of the block size

and/or block count is desirable, the function opt_block_cnt can be used (see following Section).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 135

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.9. KERNEL LAUNCH BOUNDS Chapter 9

Important note: using cooperative group features such as grid and multi-grid synchronization requires cooper-

ative kernel launches, which is only available for Pascal, Volta (or newer) GPUs and requires either Windows or

Linux with the GPU device operating in TCC driver mode. Also see https://docs.nvidia.com/gameworks/

content/developertools/desktop/nsight/tesla_compute_cluster.htm. As an alternative, when cooperative

kernel launching is not available, Quasar will emulate grid synchronization. This is achieved by disabling the

configuration setting CUDA_BACKEND_COOPERATIVEGROUPS_TCCDRIVER in Quasar.config.xml.

9.8.2 Optimizing block count for grid synchronization

Whereas opt_block_size calculates the best suited block size for a kernel function, opt_block_cnt can be used

to calculate the block count, in order to ensure that all blocks can be active at the same time. This condition is

required when performing grid synchronization, but may also occur in a few kernel tiling schemes.

block_size = opt_block_size(kernel,data_dims)

grid_size = opt_block_cnt(kernel,block_size,data_dims)

parallel_do([grid_size.*block_size, block_size], kernel)

9.8.3 Memory fences

CUDA follows a weak consistence memory model, which means that shared/global memory writes are not necessarily

performed in order. This may result in unexpected results in case the programming code assumes a fixed order of

memory operations.

The keyword memfence can be used to place memory barriers in the code; this is useful when threads need to wait

for a global memory operation to be completed. Currently memfence only has effect inside kernel/device functions.

Note that these instructions in addition prevent the compiler from performing optimizations across the fence (e.g.,

caching a value in the registers).

Keyword Description

memfence(block) Suspends the current thread until its global/shared memory

writes are visible by all threads in the current block

memfence(grid) Suspends the current thread until its global memory

writes are visible by all threads in the grid

memfence(system) Suspends the current thread until its global memory writes

are visible by all threads in the system (CPU, GPU)

9.9 Kernel launch bounds

By default, the runtime system decides on how many threads use when launching a given kernel. The back-end

compiler (e.g., NVCC) however, must ensure that the kernel is compiled for a flexible number of threads. For this

purpose, an upper limit (called launch bounds) for the possible number of threads is selected. The launch bounds

are in turn used to calculate the number of registers used. The smaller the number of registers that are being used,

the more thread blocks can be scheduled in parallel and the higher the efficiency. On the other hand, for large

kernels with a large number of registers, the back-end compiler places less-used variables in the global memory to

avoid to many registers to be used (called register spilling). When variables are stored in global memory, the cost

can be tremendous.

However, often an approximate idea of the number of threads per block is known at compile-time. For example,

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 136

https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.10. MEMORY MANAGEMENT Chapter 9

the technique from section 9.7 may assume that the number of threads per block is fixed to a given number. For

practical purposes, let us assume that this number is 128, where the maximum number of threads the kernel permits

is 1024. For 128 threads, the amount of shared memory used by the kernel (i.e., 512 bytes in single precision mode

and 1024 bytes in double precision mode) is much lower than in case the kernel would be executed with 1024

threads per block. This allows the GPU to schedule multiple threads in parallel, which increases the computational

performance of the kernel. Now, since we know that only 128 threads are used, the compiler has actually more

registers available than in the case of 1024 threads, potentially avoiding the register spilling. Hence the compiler

can tune the number of registers with this extra piece of information.

For this purpose, CUDA provides a __launch_bounds__ directive, and similarly this directive is also available in

Quasar, For examples:

{!cuda_launch_bounds max_threads_per_block=128}

where the maximal number of threads per block obviously needs to be smaller or equal than the maximal supported

number of threads by the GPU (typically, 1024). It suffices to place this code attribute directly inside a kernel

function (for example at the top). It is also possible to specify the minimal number of blocks per streaming processor

(SM) that needs to be executed:

{!cuda_launch_bounds max_threads_per_block=128; min_blocks_per_sm = 4}

The number of registers used by a kernel function can be inspected in the Quasar Redshift IDE by hovering with the

mouse over the left margin in the source code editor, at the position of a kernel function. We have seen performance

improvements of 20-30% or more by tuning the number of registers and number of threads per blocks.

The kernel launch attribute is also generated by several automatic code transformations present in the Quasar

compiler.

9.10 Memory management

There are some problems operating on large images that do not fit into the GPU memory. The solution is to provide

a FAULT-TOLERANT mode, in which the operations are completely performed on the CPU (we assume that the

CPU has more memory than the GPU). Of course, running on the CPU comes at a performance hit. Therefore I

will add some new configurable settings in this enhancement.

Please note that GPU memory problems can only occur when the total amount of memory used by one single kernel

function > (max GPU memory - reserved mem) * (1 - fragmented mem%). For a GPU with 1 GB, this might be

around 600 MB. Quasar automatically transfers memory buffers back to the CPU memory when it is running out

of GPU space. Nevertheless, this may not be sufficient, as some very large images can take all the space of the GPU

memory (for example 3D datasets).

Therefore, three configurable settings are added to the runtime system (see Quasar.Redshift.config.xml):

1. RUNTIME_GPU_MEMORYMODEL with possible values:

• SmallFootPrint - A small memory footprint - opts for conservative memory allocation leaving a lot of

GPU memory available for other programs in the system

• MediumFootprint (default) - A medium memory footprint - the default mode

• LargeFootprint - chooses aggressive memory allocation, consuming a lot of available GPU memory quickly.

This option is recommended for GPU memory intensive applications.

2. RUNTIME_GPU_SCHEDULINGMODE with possible values:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 137

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

9.11. QUERYING GPU HARDWARE FEATURES Chapter 9

• MaximizePerformance - Attempts to perform as many operations as possible on the GPU (potentially

leading to memory failure if there is not sufficient memory available. Recommended for systems with a

lot of GPU memory).

• MaximizeStability (default) - Performs operations on the CPU if there is not GPU memory available.

For example, processing 512 MB images when the GPU only has 1 GB memory available. The resulting

program may be slower. (FAULT-TOLERANT mode)

3. RUNTIME_GPU_RESERVEDMEM

• The amount of GPU memory reserved for the system (in MB). The Quasar runtime system will not

use the reserved memory (so that other desktop programs can still run correctly). Default value = 160

MB. This value can be decreased at the user’s risk to obtain more GPU memory for processing (desktop

applications such as Firefox may complain. . .)

Please note that the “imshow” function also makes use of the reserved system GPU memory (the CUDA data is

copied to an OpenGL texture).

9.11 Querying GPU hardware features

In general, GPU hardware features will be unlocked when the hardware supports it. However, for target-dependent

kernels (e.g., see section 17.2.5), it might be useful to retrieve hardware related parameters at runtime. This can

be achieved using the function gpu_feature:

feature = gpu_feature(feature_name)

where feature_name can be any of the following:

feature name description

num_sm The number of streaming processors for the primary GPU

cuda_arch The CUDA architecture (major*100+minor*10). For example: 700 (Volta)

max_reg_per_block The max. number of registers available per GPU block

max_shared_mem_per_block The max. amount of shared memory available per GPU block

max_shared_mem_per_sm The max. amount of shared memory available per streaming processor

max_constant_memory The max. amount of constant memory available

warp_size The size of one warp (typically: 32)

max_threads_per_block The maximum number of threads available per block

max_warps_per_sm The maximum number of warps per streaming processor

max_blocks_per_sm The maximum number of blocks per streaming processor

These functions are mostly available in order to avoid hard-coded constants in the code. Quasar kernel functions

should be written in such a way that they work across different GPU architectures and not relying on certain partic-

ular hardware constants. These functions, together with max_block_size and opt_block_size (see section 2.4.4)

help to achieve this.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 138

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 10

Chapter

10

Parallel programming examples

This section contains a number of useful parallel programming examples together with an explanation.

10.1 Gamma correction

As a first example, we demonstrate how a gamma correction can be programmed in Quasar.

x = imread("image.png")

y = copy(x)

gamma = 0.22

parallel_do(size(y),y,gamma,__kernel__ (y:cube'unchecked, gamma:scalar, pos:ivec3) -> _

y[pos] = 255*(y[pos]*(1.0/255))^gamma)

imshow(y)

The above approach makes use of __kernel__ lambda expressions, which allows to define __kernel__ functions in

just one line of code. Note that it is possible to put multiple statements inside a lambda expression, this is done as

follows:

kernel_lambda = __kernel__ (y:cube'unchecked) -> (statement1; statement2; ...)

Sometimes, it is useful to share functionality between different kernel functions. This can be achieved using a

__device__ function:

gamma_correction = __device__ (x:scalar,gamma:scalar) -> _

255*(y*(1.0/255))^gamma

gamma_correction_kernel = __kernel__ (y:cube'unchecked, gamma:scalar, pos:ivec3) -> _

y[pos] = gamma_correction(x[pos], gamma)

Device functions are defined in the same way as kernel functions, but they can not be directly executed using the

parallel_do function.

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 139

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.2. FRACTALS Chapter 10

10.2 Fractals

As a second example, we consider the calculation of the Mandelbrot fractal. In Quasar, this can be obtained using

quite simple code, by using complex arithmetic.

% Mandelbrot fractal with Normalized Iteration Count algorithm

function [] = __kernel__ mandelbrot_fractal(im : mat'unchecked, s : scalar, _

t : cscalar, num_it : int, pos : ivec2)

p = (float(pos) ./ size(im,0..1))-0.5

c = t+s*complex(p[1],p[0])

z = 0i

N = 2.0

for n=1..num_it

if abs(z)>N

break

endif

z = z*z + c

endfor

im[pos] = n-log2(log(abs(z))/log(N))

endfunction

x = zeros(768,768)

parallel_do(size(x),x,10,complex(-1.42),512,mandelbrot_fractal)

imshow(x,[])

10.3 Image rotation, translation and scaling [basic]

The example below uses a __device__ function to perform linear interpolation. The main kernel function then

performs an affine transform on its position argument, pos. Boundary checking in the function linear_interpolate

is only performed once, using the test min(i) >= 0 && max(i-size(img_in,0..1)) < -1. Alternatively, the

modifier ’unchecked in img_in:cube’unchecked can be omitted, which would give the same result, but this would

result in 4 boundary checks (one for each img_in[...] access) instead of 1.

function [] = rotatescaletranslate(img_in, img_out, theta, s, tx, ty)

% Device function for performing linear interpolation

function [q:vec3] = __device__ linear_interpolate(img_in:cube'unchecked, p:vec2)

i = floor(p)

f = frac(p)

if min(i) >= 0 && max(i-size(img_in,0..1)) < -1

q = img_in[i[0],i[1],0..2] * (1 - f[0]) * (1 - f[1]) + _

img_in[i[0],i[1]+1,0..2] * (1 - f[0]) * f[1] + _

img_in[i[0]+1,i[1],0..2] * f[0] * (1 - f[1]) + _

img_in[i[0]+1,i[1]+1,0..2] * f[0] * f[1]

else

q = [0.,0.,0.]

endif

endfunction

function [] = __kernel__ tf_kernel(img_out : cube'unchecked, _

img_in:cube'unchecked, A:mat'unchecked'const, t:vec2, pos:ivec2)

center = size(img_in,0..1)/2

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 140

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.4. 2D HAAR INPLACE WAVELET TRANSFORM USING LIFTING Chapter 10

p = pos - center

p = [A[0,0]*p[0] + A[0,1]*p[1], A[1,0]*p[0] + A[1,1]*p[1]] + center + t

img_out[pos[0],pos[1],0..2] = linear_interpolate(img_in, p)

endfunction

degrees_to_radians = theta -> theta*pi/180

theta = degrees_to_radians(theta)

A = [[cos(theta), -sin(theta)],

[sin(theta), cos(theta)]] * 2^s

parallel_do(size(img_out,0..1),img_out,img_in,A,-[ty,tx],tf_kernel)

endfunction

10.4 2D Haar inplace wavelet transform using lifting

The following code demonstrates an inplace Haar wavelet transform, implemented using the lifting scheme (but

without normalization). The forward and backward transform respectively use the 2× 2 transform matrices:

~A =

(
1/2 1/2

1 −1

)
and ~A−1 =

(
1 1/2

1 −1/2

)
.

The main advantages of the Haar wavelet transform in the context of Quasar programs, is that the transform is

very fast (takes less than 2 ms to compute for a 512 × 512 × 3 input image on a NVidia Geforce 435M using the

CUDA computation engine). Moreover, for integer input data within the range [0, 255], this unnormalized transform

does not suffer from floating point rounding errors, hence the reconstruction (backward transform applied after the

forward transform) is exact.

Forward transform:

function [] = haar_fw(x, num_scales)

function [] = __kernel__ hor_haar_fw_kernel(x : cube'unchecked, _

y : cube'unchecked, j : int, pos : ivec3)

n = size(x,1)/2^(j+1)

if mod(pos[1],2)==0

[a, b] = [x[pos], x[pos+[0,1,0]]]

y[pos[0],pos[1]/2,pos[2]]=0.5*(a+b)

y[pos[0],pos[1]/2+n,pos[2]]=a-b

endif

endfunction

function [] = __kernel__ ver_haar_fw_kernel(x : cube'unchecked, _

y : cube'unchecked, j : int, pos : ivec3)

m = size(x,0)/2^(j+1)

if mod(pos[0],2)==0

[a, b] = [x[pos], x[pos+[1,0,0]]]

y[pos[0]/2,pos[1],pos[2]]=0.5*(a+b)

y[pos[0]/2+m,pos[1],pos[2]]=a-b

endif

endfunction

tmp = zeros(size(x))

for j=0..num_scales-1

sz = [size(x,0)/2^j,size(x,1)/2^j,size(x,2)]

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 141

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.5. CONVOLUTION Chapter 10

parallel_do(sz,x,tmp,j,hor_haar_fw_kernel)

parallel_do(sz,tmp,x,j,ver_haar_fw_kernel)

endfor

endfunction

Backward transform:

function [] = haar_bw(x, num_scales)

function [] = __kernel__ hor_haar_bw_kernel(x : cube'unchecked, _

y : cube'unchecked, j : int, pos : ivec3)

n = size(x,1)/2^(j+1)

if mod(pos[1],2)==0

a = x[pos[0],pos[1]/2,pos[2]]

b = x[pos[0],pos[1]/2+n,pos[2]]

y[pos]=a+0.5*b

y[pos+[0,1,0]]=a-0.5*b

endif

endfunction

function [] = __kernel__ ver_haar_bw_kernel(x : cube'unchecked, _

y : cube'unchecked, j : int, pos : ivec3)

m = size(x,0)/2^(j+1)

if mod(pos[0],2)==0

a = x[pos[0]/2,pos[1],pos[2]]

b = x[pos[0]/2+m,pos[1],pos[2]]

y[pos]=a+0.5*b

y[pos+[1,0,0]]=a-0.5*b

endif

endfunction

tmp = zeros(size(x))

for j=num_scales-1..-1..0

sz = [size(x,0)/2^j,size(x,1)/2^j,size(x,2)]

parallel_do(sz,x,tmp,j,hor_haar_bw_kernel)

parallel_do(sz,tmp,x,j,ver_haar_bw_kernel)

endfor

endfunction

10.5 Convolution

As a fifth example, we will illustrate how a 3 × 3 local means filter can be implemented. There are different

possibilities: 1) using a non-separable filtering, 2) using separable filtering (but requiring extra memory to store the

intermediate values), or 3) using shared memory (see section 2.4.4).

1. Non-separable implementation

x = imread("image.png")

y = zeros(size(x))

parallel_do(size(y),x,y,__kernel__ (x:cube,y:cube,pos:ivec3) -> _

y[pos] = (x[pos+[-1,-1,0]]+x[pos+[-1,0,0]]+x[pos+[-1,1,0]] + _

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 142

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.5. CONVOLUTION Chapter 10

x[pos+[0,-1,0]]+x[pos]+x[pos+[0,1,0]] + _

x[pos+[1,-1,0]]+x[pos+[1,0,0]]+x[pos+[1,1,0]])*(1.0/9))

imshow(y)

2. Separable implementation:

x = imread("image.png")

y = zeros(size(x))

tmp = zeros(size(x))

parallel_do(size(y),x,tmp,__kernel__ (x:cube,y:cube,pos:ivec3) -> _

y[pos] = x[pos+[-1,0,0]]+x[pos]+x[pos+[1,0,0]])

parallel_do(size(x),tmp,y,__kernel__ (x:cube,y:cube,pos:ivec3) -> _

y[pos] = x[pos+[0,-1,0]]+x[pos]+x[pos+[0,1,0]]*(1.0/9))

imshow(x)

3. Separable implementation, using shared memory:

function [] = __kernel__ filter3x3_kernel_separable(x:cube,y:cube,pos:ivec3,

blkpos:ivec3,blkdim:ivec3)

[M,N,P] = blkdim+[2,0,0]

assert(M<=10 && N<=16 && P<=3) % specify upper bounds for the amount of shared memory

vals = shared(M, N, P) % shared memory

sum = 0.

for i=pos[1]-1..pos[1]+1 % step 1 - horizontal filter

sum += x[pos[0],i,blkpos[2]]

endfor

vals[blkpos] = sum % store the result

if blkpos[0]<2 % filter two extra rows (needed for vertical filtering)

sum = 0.

for i=pos[1]-1..pos[1]+1

sum += x[pos[0]+blkdim[0],i,blkpos[2]]

endfor

vals[blkpos+[blkdim[0],0,0]] = sum

endif

syncthreads

sum = 0.

for i=blkpos[0]..blkpos[0]+2 % step 2 - vertical filter

sum += vals[i,blkpos[1],blkpos[2]]

endfor

y[pos] = sum*(1.0/9)

endfunction

x = imread("image.png")

y = zeros(size(x))

parallel_do(size(y),x,y,filter3x3_kernel_separable)

imshow(y)

Comparison of the computation times:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 143

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.6. PARALLEL REDUCTION SUM Chapter 10

Implementation Time/run (NVidia Geforce 435M)

Non-separable 3.70 msec

Separable 4.24 msec

Separable, w. shared memory 3.51 msec

It can be noted that a separable implementation for a 3× 3 filter kernel, only brings a benefit when shared memory

is used.

Remarks:

• The out of bounds checking compilation (see section 17.3) option needs to be turned off in order to have this

benefit.

• Also important is that the upper bounds for using shared memory are specified. This can be done using the

assertion system. The compiler is then able to compute the maximal amount of shared memory that will be

needed by the kernel function (see section 9.7).

10.6 Parallel reduction sum

Note that the Quasar compiler will generate automatically code that performs a parallel sum (see sec-

tion §8.4). This section is mainly for educational purposes, for understanding the shared memory

and thread synchronization.

A parallel sum can be implemented in Quasar using a logarithmic algoritm of complexity log2N . This consists of

first computing “partial” sums of groups of elements, stored in shared memory, followed by recursively adding of the

shared memory partial sums. A lot of information on this kind of algorithm can be found in literature. In Quasar,

the implementation for vectors is as follows:

function [y : scalar] = __kernel__ my_sum(x : vec'unchecked,

blkpos : int, blkdim : int)

bins = shared(blkdim) % Note - we assume that blkdim is a power of two!

nblocks = (numel(x)+blkdim-1)/blkdim

% step 1 - parallel sum

val = 0.0

for m=0..nblocks-1

if blkpos + m*blkdim < numel(x)

val += x[blkpos + m*blkdim]

endif

endfor

bins[blkpos] = val

% step 2 - reduction

syncthreads

bit = 1

while bit < blkdim

index = 2*bit*blkpos

if blkpos+index<blkdim

bins[index] = bins[index] + bins[index + bit]

endif

syncthreads

bit *= 2

endwhile

% write output

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 144

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.6. PARALLEL REDUCTION SUM Chapter 10

if blkpos == 0

y += bins[0]

endif

endfunction

In step 1, the input is split in a number of blocks, where each block has size “blockdim”. Then all blocks are summed

in parallel, the results are stored in “bins” (has one entry per block element). In step 2, all elements of bins are

added together, using an FFT-like butterfly. When blkdim = 16, the algorithm is as follows:

% iteration 1 (subsequent steps are performed in parallel)

bins[0] += bins[1]

bins[2] += bins[3]

bins[4] += bins[5]

bins[6] += bins[7]

bins[8] += bins[9]

bins[10] += bins[11]

bins[12] += bins[13]

bins[14] += bins[15]

syncthreads

% iteration 2 (subsequent steps are performed in parallel)

bins[0] += bins[2]

bins[4] += bins[6]

bins[8] += bins[10]

bins[12] += bins[14]

% iteration 3

bins[0] += bins[4]

bins[8] += bins[12]

% iteration 4

bins[0] += bins[8]

Finally, the end result (bins[0]) is accumulated in the kernel output argument y (see section 4.7).

Remark: due to the atomic operation +=, the result is not deterministic: floating point rounding errors depend on

the order of the operations. For an atomic add, the order of operations is not specified. This can be solved by

storing the intermediate results in a vector, and summing this vector independently.

The above example can be used to write a more generic parallel reduction, that can be used for multiplication,

maximization, minimization:

type accumulator : [__device__ (scalar, scalar) -> scalar]

function y : scalar = __kernel__ parallel_reduction(x : vec'unchecked,

acc : accumulator, val : scalar, blkpos : int, blkdim : int)

bins = shared(blkdim) % Note - we assume that blkdim is a power of two!

nblocks = (numel(x)+blkdim-1)/blkdim)

for m=0..nblocks-1 % step 1 - parallel sum

if blkpos + m*blkdim < numel(x)

val = acc(val, x[blkpos + m*blkdim])

endif

endfor

bins[blkpos] = val

syncthreads % step 2 - reduction

bit = 1

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 145

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.7. A MORE ACCURATE PARALLEL SUM Chapter 10

while bit < blkdim

index = 2*bit*blkpos

if index + bit < blkdim

bins[index] = acc(bins[index], bins[index + bit])

endif

syncthreads

bit *= 2

endwhile

y += bins[0] % write output

endfunction

device_sum = __device__ (x : scalar, y : scalar) -> x + y

device_prod = __device__ (x : scalar, y : scalar) -> x * y

reduction (x : cube) -> sum(x) = parallel_do(512, x, device_sum,0,parallel_reduction)

reduction (x : cube) -> prod(x) = parallel_do(512, x, device_prod,0,parallel_reduction)

Here, we define the accumulation functions (device_sum and device_prod), and we pass the functions dynamically

to the parallel_reduction function.

Note that the Quasar compiler is also able to recognize for-loops that could benefit from the parallel reduction

algorithm. In this case, the for-loop is automatically transformed to the above algorithm (see section §8.4).

10.7 A more accurate parallel sum

As mentioned in section 2.2.1, floating point math is not associative, and the order of the summations may depend

on the GPU architecture (the used block dimensions, etc.). The code below illustrates a more accurate parallel

summation algorithm than in the previous section, combining Kahan’s algorithm, with the parallel sum reduction

reduction. The main idea of Kahan’s algorithm, is to accumulate small errors in a separate variable. Because the

operations do not require any extra global or shared memory, all operations are performed in local memory (see

section 2.4.3), yielding minimal overhead compared to the direct algorithm.

% Sum of all elements in the specified cube.

function y : scalar = r_sum(x : cube) concealed

function [y : scalar] = __kernel__ r_sum_kernel(x : vec,

nblocks : int, blkdim : int, blkpos : int)

s = shared(blkdim)

% step 1 - parallel sum

sum = 0.0

c = 0.0

for n=0..nblocks-1

if blkpos + n * blkdim < numel(x)

% Kahan's sum reduction

u = x[blkpos + n * blkdim] - c

t = sum + u

c = (t - sum) - u

sum = t

endif

endfor

s[blkpos] = sum

% step 2 - reduction

syncthreads

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 146

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.8. PARALLEL SORT Chapter 10

% now sort all bins from large to small magnitudes

bit = 1

% use regular summing

while bit<blkdim

index=2*bit*blkpos

if index+bit<blkdim

s[index] = s[index] + s[index+bit]

syncthreads

endif

bit *= 2

endwhile

if blkpos==0

y += s[0]

endif

endfunction

y = r_aggregator(x, r_sum_kernel)

endfunction

% Aggregator helper function (deals with the computation

% of the block sizes)

function z = r_aggregator(x, kernel) concealed

N = numel(x)

BLOCK_SIZE = prod(max_block_size(kernel, N))

nblocks = int((N + BLOCK_SIZE-1) / BLOCK_SIZE)

z = parallel_do([[1,BLOCK_SIZE],[1,BLOCK_SIZE]],x,nblocks,kernel)

endfunction

% Define a reduction to replace the summing function by our

% "improved" implementation.

reduction (x : cube) -> sum(x) = r_sum(x)

10.8 Parallel sort

To implement a parallel sorting algorithm, several algorithms exist. For the bitonic sort algorithm, the Quasar

implementation is as follows:

function [] = sort(x)

function [] = __kernel__ bitsort(x : mat, n : int, blkdim : ivec2,

blkpos : ivec2, pos : ivec2)

k = 2

% copy the row to the shared memory...

s = shared(blkdim[0], n)

for l = 0..blkdim[1]..n-1

tid = blkpos[1] + l

if tid < size(x,1)

s[blkpos[0], tid] = x[pos[0], tid]

else

s[blkpos[0], tid] = 1e37 % maximum floating point value

endif

endfor

syncthreads

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 147

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.9. MATRIX MULTIPLICATION Chapter 10

% parallel bitonic sort

while k <= n

% bitonic merge

j = int(k / 2)

while j > 0

for l = 0..blkdim[1]..n-1

tid = blkpos[1] + l % thread id

ixj = xor(tid, j)

if tid < ixj

if and(tid, k) == 0

v = [blkpos[0], tid]

w = [blkpos[0], ixj]

else

v = [blkpos[0], ixj]

w = [blkpos[0], tid]

endif

if s[v] > s[w]

[s[v], s[w]] = [s[w], s[v]]

endif

endif

endfor

syncthreads

j /= 2

endwhile

k *= 2

endwhile

% Copy back the results

for l = 0..blkdim[1]..n-1

tid = blkpos[1] + l

if tid < size(x,1)

x[pos[0], tid] = s[blkpos[0], tid]

endif

endfor

endfunction

nextpow2 = x -> 2^ceil(log2(x))

n = nextpow2(size(x,1))

sz = max_block_size(bitsort, [size(x,0),min(n,256),1])

parallel_do([[size(x,0),sz[1],1],sz],x,n,bitsort)

endfunction

A complete explanation of the bitonic sort algorithm can be found on http://en.wikipedia.org/wiki/Bitonic_

sorter. Here, bitonic sorting is applied along the rows of the matrix.

The function handles input sizes that are not a multiple of two.

10.9 Matrix multiplication

Matrix multiplication in CUDA is so much fun that some people write books on this topic (see http://www.shodor.

org/media/content//petascale/materials/UPModules/matrixMultiplication/moduleDocument.pdf). The fol-

lowing is the block-based solution proposed by NVidia. The solution exploits shared memory to reduce the number

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 148

http://en.wikipedia.org/wiki/Bitonic_sorter
http://en.wikipedia.org/wiki/Bitonic_sorter
http://www.shodor.org/media/content//petascale/materials/UPModules/matrixMultiplication/moduleDocument.pdf
http://www.shodor.org/media/content//petascale/materials/UPModules/matrixMultiplication/moduleDocument.pdf
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.9. MATRIX MULTIPLICATION Chapter 10

of accesses to global memory.

__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)

{

// Block row and column

int blockRow = blockIdx.y, blockCol = blockIdx.x;

// Each thread block computes one sub-matrix Csub of C

Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

// Each thread computes 1 element of Csub accumulating results into Cvalue

float Cvalue = 0.0;

// Thread row and column within Csub

int row = threadIdx.y, col = threadIdx.x;

// Loop over all the sub-matrices of A and B required to compute Csub

for (int m = 0; m < (A.width / BLOCK_SIZE); ++m)

{

// Get sub-matrices Asub of A and Bsub of B

Matrix Asub = GetSubMatrix(A, blockRow, m);

Matrix Bsub = GetSubMatrix(B, m, blockCol);

// Shared memory used to store Asub and Bsub respectively

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load Asub and Bsub from device memory to shared memory

// Each thread loads one element of each sub-matrix

As[row][col] = GetElement(Asub, row, col);

Bs[row][col] = GetElement(Bsub, row, col);

__syncthreads();

// Multiply Asub and Bsub together

for (int e = 0; e < BLOCK_SIZE; ++e)

Cvalue += As[row][e] * Bs[e][col];

__syncthreads();

}

// Each thread writes one element of Csub to memory

SetElement(Csub, row, col, Cvalue);

}

(Note: some functions are omitted for clarity)

However, this implementation is only efficient when the number of rows of matrix A is about the same as the number

of cols of A. In other cases, performance is not optimal. Second, there is the issue that this version expects that

the matrix dimensions are a multiple of BLOCK_SIZE. Why use a 3x3 matrix if we can have a 16x16?

In fact, there are 3 cases that need to be considered (let n < N):

1. (n×N) × (N × n): The resulting matrix is small: in this case, it is best to use the parallel sum algorithm.

2. (N × N) × (N × N): The number of rows/cols of A are more or less equal: use the above block-based

algorithm.

3. (N × n) × (n×N): The resulting matrix is large: it is not beneficial to use shared memory.

The following example illustrates this approach in Quasar:

% Dense matrix multiplication

function C = dense_multiply(A : mat, B : mat)

% Algorithm 1 - is well suited for calculating products of

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 149

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.9. MATRIX MULTIPLICATION Chapter 10

% large matrices that have a small matrix as end result.

function [] = __kernel__ kernel1(a : mat'unchecked, b : mat'unchecked,
c : mat'unchecked, blkdim : ivec3, blkpos : ivec3)

n = size(a,1)

bins = shared(blkdim)

nblocks = int(ceil(n/blkdim[0]))

% step 1 - parallel sum

val = 0.0

for m=0..nblocks-1

if blkpos[0] + m*blkdim[0] < n % Note - omitting [0] gives error

d = blkpos[0] + m*blkdim[0]

val += a[blkpos[1],d] * b[d,blkpos[2]]

endif

endfor

bins[blkpos] = val

% step 2 - reduction

syncthreads

bit = 1

while bit < blkdim[0]

if mod(blkpos[0],bit*2) == 0

bins[blkpos] += bins[blkpos + [bit,0,0]]

endif

syncthreads

bit *= 2

endwhile

% write output

if blkpos[0] == 0

c[blkpos[1],blkpos[2]] = bins[0,blkpos[1],blkpos[2]]

endif

endfunction

% Algorithm 2 - the block-based algorithm, as described in the CUDA manual

function [] = __kernel__ kernel2(A : mat'unchecked, B : mat'unchecked,
C : mat'unchecked, BLOCK_SIZE : int, pos : ivec2, blkpos : ivec2, blkdim : ivec2)

% A[pos[0],m] * B[m,pos[1]]

sA = shared(blkdim[0],BLOCK_SIZE)

sB = shared(BLOCK_SIZE,blkdim[1])

sum = 0.0

for m = 0..BLOCK_SIZE..size(A,1)-1

% Copy submatrix

for n = blkpos[1]..blkdim[1]..BLOCK_SIZE-1

sA[blkpos[0],n] = pos[0] < size(A,0) && m+n < size(A,1) ? A[pos[0],m+n] :
0.0

endfor

for n = blkpos[0]..blkdim[0]..BLOCK_SIZE-1

sB[n,blkpos[1]] = m+n < size(B,0) && pos[1] < size(B,1) ? B[m+n,pos[1]] :
0.0

endfor

syncthreads

% Compute the product of the two submatrices

for n = 0..BLOCK_SIZE-1

sum += sA[blkpos[0],n] * sB[n,blkpos[1]]

endfor

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 150

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

10.9. MATRIX MULTIPLICATION Chapter 10

syncthreads

endfor

if pos[0] < size(C,0) && pos[1] < size(C,1)

C[pos] = sum % Write the result

endif

endfunction

% Algorithm 3 - the most straightforward algorithm

function [] = __kernel__ kernel3(A : mat'unchecked, B : mat'unchecked,
C : mat'unchecked, pos : ivec2)

sum = 0.0

for m=0..size(A,1)-1

sum += A[pos[0],m]*B[m,pos[1]]

endfor

C[pos] = sum

endfunction

[M,N] = [size(A,0),size(B,1)]

C = zeros(M,N)

if M <= 4

P = prevpow2(max_block_size(kernel1,[size(A,1),M*N])[0])

parallel_do([P,M,N],A,B,C,kernel1)

elseif size(A,1)>=8 && M >= 8

P = min(32, prevpow2(size(A,1)))

blk_size = max_block_size(kernel2,[32,32])

sz = ceil(size(C,0..1) ./ blk_size) .* blk_size

parallel_do([sz,blk_size],A,B,C,P,kernel2)

else

parallel_do(size(C),A,B,C,kernel3)

endif

endfunction

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 151

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 11

Chapter

11

Multi-GPU programming

Quasar supports multi-device configurations, which allows several GPUs to be combined with a CPU. For the

programmer, outside kernel/device functions, the programming model is sequential in nature, irrespective of whether

one or multiple GPUs are being used. The Quasar multi-GPU feature allows a program to be executed on multiple

GPUs (let say 2), without any/very little changes (see below) to the code, while benefitting from a 2x acceleration.

To achieve this, the load balancing is entirely automatic and will take advantage of the available GPUs, when

possible. The run-time system supports peer-to-peer memory transfers (when available) and transfers via host

pinned memory. Here, host pinned memory is used to make sure that the memory copies from the GPU to the host

are entirely asynchronous.

Each of the GPU devices has its own command queue, this is a queue on which the load balancer places individual

commands that needs to be processed by the respective devices. The load balancer takes several factors into account,

such as memory transfer times, load of the GPU, dependencies of the kernel function, . . .

The multi-GPU functionality relies on the scheduler and load balancer in the Hyperion (v2) runtime system;

therefore, it is only available for Hyperion devices (v2).

Systems with multiple GPUs contain either multi-GPU boards with PCI Express bridge chip or multiple PCI

Express slots. In case of multiple PCI express slots, memory transfers from GPU A to GPU B need to pass

the host (CPU) memory. Therefore, there are huge differences between the memory transfer times in the system

(e.g. local device transfers, between GPU and the host and between GPU peers). Due to passing the CPU memory,

memory transfers between GPUs may not be as efficient as expected, causing overhead and non-linear multi-GPU

performance scaling.

It is therefore necessary to have a good understanding of the different factors that affect performance in a multi-GPU

system.

11.1 A quick glance

All the memory transfers between the GPUs and between host and GPU, are managed automatically (and reduced

as much as possible). In some cases it is useful to have more control about which GPU is used for which task. This

can be achieved by explicitly setting the GPU device via a scheduling instruction:

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 152

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.2. SETTING UP THE DEVICE CONFIGURATION Chapter 11

{!sched gpu_index=0}

or

{!sched gpu_index=1}

{!sched} to reset to automatic scheduling

This overrides the default decision of the load balancer. For for-loops this can be done as follows:

for k=0..num_tasks-1

{!sched gpu_index=mod(k,2)}

parallel_do(..., kernel1)

parallel_do(..., kernel2)

endfor

This way, each GPU will take care of one iteration of the loop. To enhance the load balancing over the GPUs, it

may also be more beneficial to use the following technique

{!parallel for; multi_device=true}

for k=0..num_tasks-1

parallel_do(..., k, kernel1)

parallel_do(..., k, kernel2)

endfor

Here,

{!parallel for; multi_device=true}

will essentially unroll the for-loop twice, where each parallel_do function is launched on a different device. Inter-

nally, the following code is generated:

for k=0..2..num_tasks-1

{!sched gpu_index=0}

parallel_do(..., k, kernel1)

{!sched gpu_index=1}

parallel_do(..., k+1, kernel1)

{!sched gpu_index=0}

parallel_do(..., k, kernel2)

{!sched gpu_index=1}

parallel_do(..., k+1, kernel2)

endfor

11.2 Setting up the device configuration

A Hyperion device configuration is stored in the application user folder (evaluate quasardir(”app dir”) in Redshift to

know the location):

<quasar>

<computation-engine name="v2 dual CUDA/CPU engine" short-name="CUDA - v2">

<cpu-device num-threads="2" max-cmdqueue-size="32" cuda-hostpinnable-memory="true" />

<cuda-device max-concurrency="4" max-cmdqueue-size="64" ordinal="0" />

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 153

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.3. THREE LEVELS OF CONCURRENCY Chapter 11

<cuda-device max-concurrency="4" max-cmdqueue-size="64" ordinal="1" />

</computation-engine>

</quasar>

A multi-GPU configuration has one CPU device and at least two CUDA devices. The following parameters are

available:

Parameter explanation

ordinal the GPU index (typically 0, 1, 2, 3, . . .)

num−threads the number of CPU threads used for launching

parallel kernels (note: each kernel can spawn some more OpenMP

threads,

this number is determined by dividing the number of logical

processor cores by num−threads).

max−cmdqueue−size the maximum length of the device command

queue (concurrent kernel execution mode only).

max−concurrency the number of CUDA streams associated to

each device (concurrent kernel execution mode only)

cuda−hostpinnable−memory if true, memory transfers between host CPU and

the GPU(s) will be accelerated using host pinnable

(non-pageable) memory. This is required for asynchronous memory

copies.

A typical maximum size for the command queue is 64. This value strikes a balance between sufficient concurrency

on the one hand and buffering and scheduling overheads on the other hand. A good value for max-concurrency

is 4, higher values often don’t impact the GPU performance (neither positively or negatively), due to the limited

number of kernels that the hardware can run concurrently.

Note that a default Hyperion device configuration is automatically generated by the Quasar installer. Additionally,

the Hyperion computation engine can be configured in Redshift via “Configure Devices”:

11.3 Three levels of concurrency

Quasar features three levels of concurrency:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 154

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.4. MANUAL VS. AUTOMATIC MULTI-GPU SCHEDULING Chapter 11

• Level 1: within a kernel : GPU threads are executed in parallel, via parallel do () or via automatically paral-

lelized for-loops.

• Level 2: concurrent kernel execution: Quasar will concurrently launch kernels (e.g., by automatically assigning

CUDA streams). This requires a runtime option (“concurrent kernel execution”) to be enabled. When one GPU

is not fully occupied (e.g., due to a low occupancy), the GPU may execute subsequent kernels concurrently.

• Level 3: multi-GPU processing : kernels can be launched on different GPUs in the system.

This requires:

• load balancing, to ensure that each GPU is sufficiently (or maximally) utilized

• scheduling: kernel launches may be reordered in order to obtain a better device utilization

• automatic memory transfers (peer-to-peer) between GPU devices. As mentioned before, the peer-to-peer

copies may pass the CPU host memory. This is to be avoided, so this issue is also taken into account by the

runtime system when making scheduling and load balancing decisions.

For each of the three concurrency levels, Quasar has an automatic mode. It some cases it may be beneficial to

switch to the manual mode as well, e.g., to take control in own hands or to further optimize the program.

11.4 Manual vs. automatic multi-GPU scheduling

Quasar supports two multi-GPU scheduling modes:

1. Automatic scheduling : the scheduling and load-balancing algorithm decides fully autonomously on which GPU

(or CPU) to execute the given kernels. This is a fairly sophisticated algorithm that not only takes kernel/task

dependencies into account, but also the memory state, the required memory transfers (e.g., peer-to-peer copies)

and synchronization between the GPUs.

2. Manual scheduling : here the user specifies which sections of the code run on which GPU. This is mostly useful

when the code lends itself for logical separation onto multiple GPU.

Both modes can be used interchangedly during the program execution: the automatic scheduling takes the manual

scheduling rules into account. Therefore, it is perfectly possible that both techniques complement each other. In

the following, we explain in more detail how this is done.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 155

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.4. MANUAL VS. AUTOMATIC MULTI-GPU SCHEDULING Chapter 11

In Quasar, the scheduler can be controlled via code attributes (Quasar’s equivalent for pragmas and attributes in

other programming languages).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 156

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.4. MANUAL VS. AUTOMATIC MULTI-GPU SCHEDULING Chapter 11

Code attribute explanation

{!sched mode=auto} sets the scheduling mode to automatic

{!sched mode=cpu} sets the scheduling mode to CPU,

meaning that the

following kernel functions will be executed

on the CPU

{!sched mode=gpu} sets the scheduling mode to GPU,

meaning that the following kernel

functions will be executed on the GPU

{!sched mode=gpu;

gpu index=n}
sets the scheduling mode to GPU n,

meaning that the following kernel

functions will be executed on GPU n

{!sched gpu index=n} retains the scheduling mode, but sets

GPU n as the active GPU.

The following kernel functions scheduled

to the GPU will be executed

on GPU n

When the GPU scheduling mode is not specified from within the code, the scheduler will automatically assign a

GPU depending on the current load of the GPUs (automatic scheduling) and the associated memory transfer costs.

Switching to manual mode can be performed by one of the above scheduling code attributes. At any point in time,

it is possible to switch back to automatic scheduling, by means of {!sched mode=auto}.
During scheduling, it may occur that some kernel functions have preference for a certain GPU, while other kernel

functions have not. The scheduler takes the preferences into account, so that unassigned kernel functions may be

scheduled to the other GPU, if available.

Additionally, it is possible to manually copy variables to a specified GPU target:

Code attribute explanation

{! transfer vars=A;

target=gpu; gpu index

=0}

Copies the variable A to GPU 0 memory

{! transfer vars=A;

target=gpu; gpu index

=1}

Copies the variable A to GPU 1 memory

{! transfer vars=A;

target=cpu}
Copies the variable A to the CPU

memory

Important to know is that the above code attributes should be used only when necessary (e.g., when profiling has

indicated that it is advantageous):

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 157

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.5. HOST SYNCHRONIZATION Chapter 11

• Using these code attributes incorrectly may lead to unnecessary memory transfers

• Additionally, a transfer operation involves a scheduling synchronization, leading all the pending kernels for

variable A to be launched immediately. This may interfere with the scheduling algorithm leading to a degraded

performance.

11.5 Host Synchronization

The global scheduling algorithm generally only launches kernels at the moment that the results are needed (e.g., for

further processing on the host CPU or for visualization). To enforce all pending kernels to be launched, a host-wide

barrier can be used using syncthreads(host). This function works similar to syncthreads(block), but with the difference

that all computation devices in the system will be synchronized. Below is a screenshot of the Redshift profiler that

shows that syncthreads(block) performs a lot of work: in fact a whole batch of kernel functions is launched.

One subtle issue to be aware of is that measuring time differences in a multi-GPU environment using tic () and toc()

may not give the desired results: it is possible that all kernel functions in between tic () and toc() are postponed

for execution and in that case toc() will result a very small time difference (e.g., 1 microsecond). To correct the

timing, it is best to synchronize the devices:

tic()

parallel_do(...)

syncthreads(host)

toc()

The reason that toc() does not implicitly imply syncthreads(host), is that host synchronization breaks concurrency:

suppose that we would have the following code fragment:

tic()

{!sched mode=gpu; gpu_index=0}

parallel_do(...)

syncthreads(host)

toc()

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 158

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.6. KEY PRINCIPLES FOR EFFICIENT MULTI-GPU PROCESSING Chapter 11

tic()

{!sched mode=gpu; gpu_index=1}

parallel_do(...)

syncthreads(host)

toc()

Here, the host barrier would cause GPU 2 to be idle in the first tic () ... toc() block and correspondingly, GPU 1 is

also idle in the second tic () ... toc() block. To measure independently how long work takes on GPUs 1 and 2.

The execution times of a kernel on a GPU can therefore not be measured independently, at least not when other

kernels are running on the other GPU. To optimize execution performance, it is nevertheless useful to have these

independent measurements. These can be achieved using the built-in profiling tools.

11.6 Key principles for efficient multi-GPU processing

There are 5 key principles to be applied to enable efficient multi-GPU processing:

1. Compute intensive kernels: the program contains enough kernels that are compute-bound (i.e., not limited by

memory or register restrictions). In case a program does not fully utilize a single GPU, its performance will

most likely not be improved by using multiple GPUs. It is therefore recommended to optimize performance

first on a single GPU, before attempting to get performance benefits by switching to multiple GPUs.

2. Inter-kernel concurrency : there must exist concurrency between kernels within a window of N subsequent

launches. Typically, N is quite large (e.g., N=32768) to detect sufficient concurrency. Often, dependencies

between kernel functions exist, which means that a kernel function needs to wait for the result of another

kernel function. This is fine, as long as a kernel does not need its results from different GPUs. If this is the

case, a peer-to-peer copy between the GPUs is performed, which may have one subtle drawback: during the

peer-to-peer copy, both GPUs are involved and the copy performs synchronization between the two devices.

Luckily, the scheduler can detect this situation and work around it. Correspondingly, the programs that

benefit the most from multi-GPU acceleration and that can enjoy linear scaling, are the programs in which

logical separation is possible between the GPUs and for which limited data transfer between the GPUs is

required.

3. Aggregation variables impose device synchronization: whenever a scalar result is obtained (for example, by

calling the sum() function), the CPU synchronizes with the GPU device. The corresponding kernel function

(together with its dependencies) needs to be executed immediately. This significantly reduces the freedom of

the scheduler in reordering the operations. To avoid this problem, it is beneficial to use vectors of length 1:

function [] = __kernel__ calc_sum(result : vec(1), data : cube, pos : vec3)

result += data[pos]

endfunction

This approach is more efficient than using the return parameters of the kernel function (which are currently

immediately read by the CPU when the kernel function is complete). Only when directly accessing the content

of the vector result :

print result[0]

a device synchronization will be performed.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 159

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.7. SUPPORTED LIBRARIES Chapter 11

A related subtle side effect is when passing vectors/matrices with small dimensions (numel(x)<=64) to a kernel

function. Because these objects are passed directly to the registers of the kernel function, the values are read-

out by the CPU. To avoid this problem, it is best to omit the length of the vector or size of the matrix in the

kernel function definition.

function [] = __kernel__ process(mean_location:vec, pos:int) % vec instead of vec(3)

endfunction

Note that this problem only occurs for objects that are being written in one kernel and read in a subsequent

kernel. For read-only data, there is no problem.

4. Memory transfers between host and GPU should be avoided as much as possible, for the same reason as

above. In concurrent kernel execution mode, the runtime performs asynchronous memory transfers, therefore

the issue from point 3 does not apply. Because memory transfers are implicit, a program may perform more

memory transfers to intended. It is then useful to investigate the profiling results (e.g., the profiling timeline

in Redshift) to find the origins of the memory transfers.

5. Avoid duplicate calculation within loops: when a constant intermediate value (vector, matrix or cube) is

required, this value should not be recalculated over and over again, requiring repeated GPU transfers. Instead

it is better to compute the value once and reuse it. The runtime keeps the memory resident in multiple GPUs,

so that no GPU transfers are requires for kernel functions using the value.

In order to reach linear multi-GPU scaling, it is necessary to take the above principles into account.

11.7 Supported Libraries

Currently all built-in Quasar functions support multi-GPU processing. Furthermore, the following CUDA libraries

have been enabled:

• cuFFT: Fast Fourier transforms

• cuBLAS: Basic Linear Algebra subprograms(*)

• cuSolver: Solvers for linear systems

• cuDNN: Deep neural networks

In automatic scheduling mode, the Quasar runtime will automatically dispatch the CUDA library functions to the

available GPUs.

(*) Some of the cuBLAS functions, in particular those that result a scalar value, perform implicit device synchro-

nization by default. Therefore these functions do not offer a lot of multi-GPU benefits for the moment. In a future

version, this issue will be mitigated.

11.8 Profiling techniques

To speed up Quasar programs that do not take optimally advantage of the available GPUs, it is necessary to

determine which key principle(s) that is/are violated. For this purpose, using the Redshift profiler, several techniques

can be used to analyze the behavior of multi-GPU programsThe profiler incorporates the CUDA Profiling tools

(CUPTI), which are also used by NVidia NSight and NVidia Visual Profiler. In contrast to the NVidia NSight and

Visual Profiler, the Redshift profiler links the kernel functions directly to the host functions and the source code;

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 160

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.8. PROFILING TECHNIQUES Chapter 11

therefore, it is possible to obtain extra information, such as which code initiated a particular memory allocation

or memory transfer, which parameters are passed to a given kernel function etc. The GPU events view gives the

specific order of the commands that are being sent to the GPU, together with the relevant source code links.

In this section we discuss several profiling techniques that are useful to identify potential multi-GPU execution

issues.

1. Identify whether compute intensive kernels are present : compute intensive kernels can easily be spotted in the

timeline view. Ideally, subsequent kernels should start immediately, with no gap in between. So for example

the single GPU execution of the guided filter .q test program:

Here, all kernels are contiguously executed. Due to the low number of dependencies between the kernels, automatic

multi-GPU scheduling will yield linear scaling, as demonstrated by the following multi-GPU execution:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 161

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.8. PROFILING TECHNIQUES Chapter 11

No code changes were required to obtain the multi-GPU execution. It sufficed to switch from the CUDA to the

dual CUDA device.

1. Check inter-kernel concurrency : dependencies between kernels can be inspected in the Redshift profiler view.

2. Check device synchronization: calls to the global scheduler can be found in the device synchronization track

with label sync event(global sched). The device that contains sync event is the device that is being synchronized.

Host functions are indicated in red, memory allocations in yellow, executed kernel functions in magenta and

memory transfers between GPUs in green.

In this case, it is useful to check whether the scheduler invocation can be avoided. By inspecting the tooltip of

sync event(global sched) and clicking onto “view in code workbench”, it is possible to track down the variable

that causes the device synchronization.

The tooltip also shows a table containing the object identifier (oid), access mode and memory size. In Quasar,

each object (e.g., vector, matrix) has a unique identifier. The oid is displayed in the GPU events view and in

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 162

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.9. AUTOMATIC GPU SCHEDULING Chapter 11

the memory profiler. By clicking onto “View object references”, all operations on this object can be visualized.

In this case, the CPU is accessing a variable with size 484 bytes. This requires the global scheduler to be

invoked. Note however that the global scheduler may also work without any particular device synchronization

being required: this is the result of the global scheduling queue being full.

Additionally, in the above screenshot, note the high number of peer to peer memory transfers indicates a poor

usage of both GPUs: peer to peer memory transfers block both involved GPUs and therefore severely impacts

the multi-GPU scaling.

3. Check for memory transfer bottlenecks

Memory bottlenecks can be identified in the memory transfer summary view. Displayed are the type of

transfer (e.g. from CPU to GPU, from GPU to CPU, between GPU peers), the number of times that this

memory transfer took place, minimum, average and maximum duration of each transfer, etc.

The tooltip of this report allows to directly browse to the source code that caused this memory transfer.

Additionally, object identifiers (oid) can be tracked via the GPU events view.

4. Check for duplicate calculations/operations in the GPU events view

The GPU events view gives a listing of all the commands executed on the GPU. See the documentation on

the enhanced profiler for the details.

In particular, it is important that a result is only calculated once, when it is used several times. This way,

the runtime can keep a copy of the data resident in the device memory of each of the GPUs.

11.9 Automatic GPU scheduling

When the GPU scheduling mode is not specified from within the code, the scheduler will automatically assign a

GPU depending on the current load of the GPUs and the associated memory transfer costs. For this technique to

be effective, it is currently required that the code is structured in such a way that subsequent kernel calls can be

parallelized over the different GPUs, with limited memory transfer. In case the scheduler detects large overheads

due to memory transfers, it is very likely that the code will be executed on only one GPU. However, when the code

(mostly) contains parallel operations on separate memory blocks (matrices etc.) with only few synchronizations

between the GPUs, the automatic GPU scheduling will be able to detect the coarse grain parallelism and the

program will be able to use multiple GPUs.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 163

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

11.10. DEVELOPING MULTI-GPU APPLICATIONS Chapter 11

11.10 Developing multi-GPU applications

A practical workflow for developing multi-GPU applications is then as follows:

1. Start from a Quasar program that is multi-GPU agnostic (i.e., that runs on a single GPU).

2. Profile the program and determine the code regions in which the automatic GPU scheduling (section 11.9) is

ineffective.

3. For these regions, insert manual scheduling commands as outlined in section 11.1

Note that even after adding manual scheduling commands, the program can still work in single-GPU mode, without

any changes (no error is generated when gpu_index is larger or equal than the number of available GPUs!) However,

improper use of {!sched} may lead to performance degradations, so it is recommended to profile the multi-GPU

application regularly.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 164

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 12

Chapter

12

SIMD processing on CPU and GPU

In SIMD, multiple processing elements process the data simultaneously, driven by a single instruction stream. SIMD

is supported by x86/x64 architectures, as well as ARM and refers to special ‘multimedia’ instructions that were

originally added to allow real-time video encoding/decoding operations as well as 3D games to run the CPU.

CUDA supports SIMD processing via its warp-based execution model, also known as single instruction multiple

threads (SIMT). However, CUDA supports a limited set of SIMD intrinsics on half precision floating point formats

and 8-bit/16-bit integer types that can be used within a single thread, allowing essentially the vector length to be

extended above the warp size (for example vector length 128 for 8-bit integers).

In essence, when performing calculations using the vectors of appropriate length (see below), the operations are

automatically mapped onto a SIMD implementation whenever possible. For example im[m,n ,0..3] might (depending

on the settings and machine architectures) load into an SSE register (four 32-bit floating point numbers) in x86/x64

code, while im[m,n ,0..7] might lead to an AVX load (eight 32-bit floating point numbers).

Some type aliases are defined in inttypes .q and floattypes .q to simplify the SIMD processing:

Type Defined in Meaning Alias for

i8vec4 inttypes .q 8-bit signed integer vector of

length 4

vec[int8](4)

u8vec4 inttypes .q 8-bit unsigned integer vector of

length 4

vec[uint8](4)

i16vec4 inttypes .q 16-bit signed integer vector of

length 4

vec[int16](4)

u16vec4 inttypes .q 16-bit unsigned integer vector of

length 4

vec[uint16](4)

hvec2 floattypes .q 16-bit (half precision) floating

point vector of length 2

vec[scalar ' half](4)

By using vector types such as above, the back-end compiler (e.g., MSVC, GCC, . . .) can choose the appropriate

SIMD instructions. Because not all compilers have the best code generation in this respect (as a sidenote, the

Intel C/C++ compiler currently offers the best results in our experiments), several low-level operations have been

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 165

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

12.1. STORAGE VERSUS COMPUTATION TYPES Chapter 12

manually vectorized in the header file quasar simd.h.

The Quasar compiler supports automatic vectorization of kernel functions. This relieves the programmer from

unfolding loops and writing manually vectorized expressions. A kernel can automatically be enabled for SIMD

processing by the following code attribute:

{!kernel_transform enable="simdprocessing"; target="cpu"}

where target specifies cpu (in case of x86/x64 SIMD) or cuda (in case of CUDA SIMD). When the target is ommitted,

SIMD is applied to any target architecture (when possible). Using Quasar SIMD processing, the SIMD acceleration

depends much less on the back-end compiler that is being used.

Because it is not guaranteed that SIMD processing improves the performance (especially when the used vector types

or operations are natively supported), the SIMD processing is not enabled by default. Therefore, the following

subsections list the operations and vector types that are accelerated.

12.1 Storage versus computation types

It is important to distinguish between types used for storage and types used for calculation. Storage types represent

the data in a more compressed format allowing the bandwidth to the memory to be reduced whenever the precision

requirements allow it. For example, an image may be stored in uint8 format, whereas the processing is performed

in int32 (or even scalar) format. This combines the storage benefits with the calculation benefits associated with

the computation units of the device.

Going one step further, the computations may also be performed in a lower precision, allowing, e.g., in CUDA 4

uint8 integers to be processed simultaneously. This is useful to reduce the pressure on the computation units of the

GPU multi-processor. However, one should take into account that:

• intermediate calculations may suffer from integer overflows or lack of precision

• not all operations are supported by the hardware (for example, mathematical functions such as sin, cos on

integer data), and using these operations will reduce the performance (because the compiler needs to convert

to an integer or floating-point format, generate code to call the function and convert back to the initial integer

format).

Therefore, by default, calculations are performed in a suited type for which all operations are fully supported by

the device (typically, 32-bit integers or 32-bit floating point operations). Conversion operations between storage

types and computation types (e.g., from u8vec4 to ivec4 and back) can be implemented using SIMD instructions

depending on the device.

Storage modifiers:

Integer types have storage modifiers. These determine how integer overflows are handled when the results of a

computation are written back to memory. When using SIMD vector types, the overflow detection can also be

accelerated using SIMD instructions. The following table gives an overview of which integer overflow checks are

currently accelerated.

Modifier Meaning

x86/x64

SIMD

CUDA

SIMD

'unchecked No overflow checking is performed Yes Yes

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 166

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

12.2. X86/X64 SIMD ACCELERATED OPERATIONS Chapter 12

Modifier Meaning

x86/x64

SIMD

CUDA

SIMD

'checked Overflow checking is performed,

an overflow leads to a runtime

error

No No

' sat Values are clipped (saturated) to

the value range of the target type

Yes No

12.2 x86/x64 SIMD accelerated operations

Supported vector lengths: 4 and 8 (see below).

x86 and x64 processors support various vector processing extensions: SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,

AVX, AVX2. It is important that the selected CPU target architecture matches the machine, otherwise an exception

will be generated. The target architecture can be configured in the Program Settings dialog box in Redshift (or

alternatively in the Quasar.config.xml configuration file):

Target architecture specifies the architecture to tune for. Vector extensions sets the highest level of vector processing

instructions that the processor supports.

The following operations are guaranteed to result in SIMD instructions, independent of the back-end compiler.

Floating point operations:

Operation Type

Requirements

(32-bit float)

Requirements

(64-bit float)

Operators +, −, .∗, ./ scalar4 SSE SSE2 / AVX

Operators +, −, .∗, ./ scalar8 AVX AVX

Comparison operators

==, !=, >, <, >=, <=

scalar4 SSE SSE2 / AVX

Functions min, max, floor , ceil ,

sqrt, rsqrt, round, frac, sign

scalar4 SSE2 SSE2 / AVX

Functions sum, prod, dotprod scalar4 SSE2 SSE2 / AVX

Integer operations:

Operation Type Requirements

Operators +, − int4 SSE2

Operators .∗ int4 SSE4.1

Comparison operators ==, !=, >, <, >=, <= int4 SSE2

Functions abs, min, max, sign, sum, prod, any int4 SSE2

Functions and, or, xor, int4 SSE2

Type conversions:

Operation Type Requirements (32-bit float) Requirements (64-bit float)

Conversion vec4 −> ivec4 SSE2 SSE2 / AVX

Conversion ivec4 -> vec4 SSE2 SSE2 / AVX

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 167

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

12.3. CUDA SIMD ACCELERATED OPERATIONS Chapter 12

Operation Type Requirements (32-bit float) Requirements (64-bit float)

Conversion ivec4 -> i8vec4, i16vec4, u8vec4, u16v SSE2

Conversion i8vec4, i16vec4, u8vec4, u16vec4 -> ivec4 SSE2

12.2.1 Example: AVX image filtering on CPU

The following code demonstrates how to use SIMD processing on the CPU.

{!parallel for}

for m=0..size(im,0)-1

for n=0..size(im,1)-1

{!kernel_transform enable="simdprocessing"; target="cpu"; numel=8}

r = 0.0

for x=0..7

r += im[m,n+x]

end

im_out[m,n] = r/(2*K+1)

endfor

endfor

The simdprocessing kernel transform causes the loop to be automatically parallelized and vectorized. The parameter

numel specifies the desired vector length (8 for AVX, 4 for SSE). If numel is omitted, the vector length is determined

depending on the available SIMD extensions of the CPU (e.g., AVX, SSE).

Whenever suited, the vectorizer will convert branches to branch-free expressions that can be vectorized. In addition,

cooldown code is generated for cases that the image dimensions (in the above example size(im,1)) are not a multiple

of the SIMD width.

12.3 CUDA SIMD accelerated operations

The following SIMD vector types are supported:

Type name Alias for Meaning

u8vec4 vec[uint8](4) Four unsigned integers (0-255)

i8vec4 vec[int8](4) Four signed integers (-128..127)

u16vec2 vec[uint16](2) Two unsigned integers (0-65536)

i16vec2 vec[int16](2) Two signed integers (-32768-32767)

hvec2 vec[scalar’half](2) Two half-precision floating point numbers

CUDA vector instructions always interact with 32-bit words. Depending on the precision (8-bit integer, 16-bit

integer or 16-bit floating point), the vector length is either 2 or 4.

Floating point operations:

The half-precision floating point format (FP16) is useful to reduce the device memory bandwidth for algorithms

which are not sensitive to the reduced precision. For half, only integers between -2048 and 2048 can exactly be

represented. Integers larger than 65520 or smaller than -65520 are rounded toward respectively positive and negative

infinity.

Next to the reduced bandwidth, starting with the Pascal architecture, the GPU also offers hardware support for

computations using this type. To gain maximal performance benefits, it is best to use the 32-bit length 2 SIMD half

type (hvec2). Use of hvec2 typically results in two numbers being calculated in parallel, leading to a performance

that is similar to one single precision floating point (FP32) operation. However, a Volta or Turing GPU is required

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 168

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

12.3. CUDA SIMD ACCELERATED OPERATIONS Chapter 12

to obtain performance benefits from using calculation in half precision format. For Kepler, Maxwell and Pascal

GPUs, hardware support for operations in half precision is notably slow, therefore it is best to use the half type

only for storage purposes (i.e., calculations are performed in the single-precision floating point type).

The following table shows the operations that have been accelerated using half types. For unsupported operations,

the computation will be performed in FP32 format, leading to extra conversions between FP32 and FP16.

Operation Type

Operators +, −, .∗ hvec2

Comparison operators ==, !=, >, <, >=, <= hvec2

Functions ceil , cos, exp, floor , log, log2, log10,

sin, rsqrt, sqrt, round

hvec2

Integer operations:

CUDA supports SIMD operations for 8-bit and 16-bit integer vectors that fit into a 32-bit words. Below is a table

of the operations that are accelerated. For unsupported operations, the computation will be performed in 32-bit

integer format, leading to extra conversions between 32-bit and 8/16-bit integer formats.

Operation Type Requirements

Operators +, − i8vec4, i16vec2, u8vec4,

u16vec2

Any CUDA version

Comparison operators ==, !=, >, <, >=, <= i8vec4, i16vec2, u8vec4,

u16vec2

Any CUDA version

abs i8vec4, i16vec2 Any CUDA version

min, max i8vec4, i16vec2, u8vec4,

u16vec2

Any CUDA version

When reading lower precision values such as uint8(4), int16(2), ... from an array, the Quasar compiler will upcast

the value to the best suited machine precision value (usually, vec[int]). This avoids unintended integer overflows

in the computations, but may also prevent some operations from being SIMD accelerated.

As a workaround, Quasar provides the {!simd_noupcast} code attribute. The following box filtering example

illustrates the use of this code attribute:

function [] = boxfilter8(im8 : mat[uint8], im_out : mat[uint8])

{!parallel for}

for m=0..size(im,0)-1

for n=0..16..size(im,1)-1

{!simd_noupcast enable=im8}

r = vec[uint8](16)

for x=0..K-1

r += im8[m,n+x+(0..15)]

endfor

im_out[m,n+(0..15)] = int(r/(2*K))

endfor

endfor

endfunction

This technique ensures that the accumulation in r is performed in uint8 precision. Be aware that there are no

integer overflow checks in this code.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 169

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

12.4. ARM NEON ACCELERATED OPERATIONS Chapter 12

12.3.1 Example: 8-bit image filtering

The following example illustrates how to make use of CUDA SIMD integer operations. The calculations are per-

formed in 32-bit integer format, while 8-bit unsigned integers are used for storage.

import "inttypes.q"

im8 = uint8(imread("image.jpg"))

im_out = mat[uint8'sat](size(im8))
{!parallel for}

for m=0..size(im,0)-1

for n=0..size(im,1)-1

{!kernel_transform enable="simdprocessing"; target="cuda"; numel=4}

r = 0

for x=0..K-1

r += im8[m,n+x]

endfor

im_out[m,n] = int(r/(2*K)) % integer division requires int() function

endfor

endfor

Compared to the previous example, the vectorization is performed automatically.

12.3.2 Example: 16-bit half float image filtering

import "floattypes.q"

im_half = scalar_to_half(imread("image.jpg"))

for m=0..size(im_half,0)-1

for n=0..size(im_half,1)-1

{!kernel_transform enable="simdprocessing"; target="cuda"; numel=2}

r = 0.0

for x=0..K-1

r += im_half[m,n+2*x]

endfor

im_out2[m,n] = r/(2*K+1)

endfor

endfor

12.4 ARM Neon accelerated operations

ARM Neon SIMD operations are currently not supported but may be added in the future. However, by using the

vector-types, the back-end compiler may generate code relying on SIMD instructions.

12.5 Automatic alignment

To maximally benefit from SIMD operations, it is essential that the memory load operations are aligned (which

means that the memory address modulo a given constant is zero, this constant is often equal to the cache line size,

e.g., 16 bytes).

The Quasar runtime ensures that all vectors and matrices have aligned memory addresses. However, this is not

sufficient to ensure that all memory loads are aligned, for example the memory load A[n∗4+(0..3)+1] can never be

aligned. In this case, an unaligned read will be generated which may reduce the performance.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 170

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

12.6. AUTOMATIC SIMD CODE GENERATION Chapter 12

12.6 Automatic SIMD code generation

There are already several situations in which the Quasar compiler automatically generates SIMD code:

1. when fixed-length vectors are used, where the length is suitable chosen (see supported vector lengths for CPU

and CUDA above).

2. during expression optimization (see section §8.1).

3. in code using shared memory designators (see 9.2).

In the future, the compiler may rely more and more on SIMD code generation when it is appropriate. For now,

SIMD processing can be activated by enabling the simdprocessing transform.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 171

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 13

Chapter

13

Best practices

13.1 Use “main” functions

Quasar programs are executed from the top to the bottom. This means that, if there are statement in between

function definitions, these statements will also be executed. This can be handy to define symbols at the global level,

such as constants, lambda expressions etc. However, it is advisable to put the main program logic in one function,

the function “main”. The function “main” will be called automatically by the runtime when the .q file is loaded. An

example of a main function is as follows:

function [] = main()

img = imread("lena_big.tif")

imshow(img)

endfunction

The main function may contain fixed and optional parameters:

function [] = main(required_param1, opt_param1=4.0)

The required parameters must then be specified via the command-line (or via the set command line arguments

dialog box in Redshift). For example:

Quasar.exe myprog.q 1 2

When not enough parameters are specified (or too many), a run-time error will be generated. Practically, there are

only two types that are allowed: scalar and string. In other to pass values of other types (e.g. matrices), it is

currently best to wrap them in a string, and to convert the string to the right data type using the function eval.

The following example illustrates this:

function [] = main(matrix_string : string)

matrix : mat = eval(matrix_string)

print matrix

endfunction

% Command line

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 172

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

13.2. SHARED MEMORY USAGE Chapter 13

Quasar.exe "[[1,0],[1,-1]]"

% Runtime system calls the main function as:

main("[[1,0],[1,-1]]")

Additionally, the main function can be made to accept a variable number of parameters, by defining it as a variadic

function (see section §4.8):

function [] = main(arg1, arg2, ...other_args)

print arg1

print arg2

for i=0..numel(other_args)-1

print other_args[i]

endfor

endfunction

This permits great flexibility when passing various parameters to Quasar programs.

Important remark: function “main” has a special behavior when the .q file is imported (using the

import keyword, see earlier): in particular, the function definition is completely skipped, as if no

“main” function was present in the file. Hence, for .q modules that are only intended to be imported,

the “main” function can contain some testing code.

13.2 Shared memory usage

Shared memory (see section 2.4.4) is on-chip and fast, however, for the CUDA computation engine, recent GPU

devices use a global memory cache that has about the same efficiency as the shared memory. Consequently, the best

practice is to only use shared memory when it is needed, for example when there is communication needed between

the different kernel functions that are running in parallel on the same block. The reason is: copying from global

memory to shared memory also has a performance cost, and because shared memory is limited, kernel functions

often need to be restructured so that everything can fit into the shared memory. This “restructuring cost” often

outweighs the benefits of using shared memory. So only use shared memory when it is really necessary.

13.3 Loop parallelization

Often, you may want to parallelize nested loops, such as:

for m=0..M-1

for n=0..N-1

for k=0..K-1

for l=0..L-1
...

endfor

endfor

endfor

endfor

The question is: which loops to parallelize? The answer is actually problem-specific (depends on the dimensions of

the variables and their dependencies), but in general, it is recommended to parallelize the outer loops as much as

possible, because this minimizes communication and synchronization with the computing device (e.g. GPU). For

example, the above loops would be best parallelized as follows:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 173

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

13.4. OUTPUT ARGUMENTS Chapter 13

function [] = __kernel__ my_kernel(...)

for l=0..L-1
...

endfor

endfunction

parallel_do([M,N,K],...,my_kernel)

However, in many cases it is not necessary to perform this parallelization yourself: the Quasar compiler has an

efficient built-in auto parallelization routine, which checks variables and their dependencies, and chooses a paral-

lelization strategy that has the most benefit for the particular problem. For more info, see section 17.1.1.

Using the {!parallel for; dim=N} code attribute, it is also possible how many of the outer for-loops need to be

parallelized. Special care needs to be taken when N is selected. When N is too small, the kernel may end up being

executed on the CPU because the data dimensions of the parallel loops are too small to match well with the GPU

requirements. See also section §8.2.

13.4 Output arguments

Functions can have multiple arguments, as shown in the following example:

function [band1 : mat, band2 : mat]=subband_decomposition(input : mat)

band1 = input .* G

band2 = output .* H

endfunction

Alternatively, the matrices are passed by reference (see Consequently, the best practice is to only use shared memory

when it is needed, for example when there is communication needed between the different kernel functions that are

running in parallel on the same block. The reason is: copying from global memory to shared memory also has a

performance cost, and because shared memory is limited, kernel functions often need to be restructured so that

everything can fit into the shared memory. This “restructuring cost” often outweighs the benefits of using shared

memory. So only use shared memory when it is really necessary.section 1.3), and this can also be exploited for

returning processing results:

band1 = input % copy reference

band2 = zeros(size(input))

function [] = subband_decomposition(band1 : mat, band2 : mat)

band2[:,:] = band1 .* G

band1 = band1 .* H

endfunction

It is preferable to use the first approach (for readability of the code), however the second approach is also useful in

some cases: the difference is in the memory usage: in the first approach: memory needs to be allocated for input,

band1 and band2, while in the second approach, only memory is needed to store band1 and band2 (hence one

memory allocation is eliminated). For applications relying on huge matrix sizes (for example applications working

with digital camera images, or for real-time video applications), it is recommended to use the second approach.

Remark that simply using“band2 = band1 .* G” in the second approach would not give the correct result, because,

even though band2 contains a pointer to the matrix memory, the value of band2 itself is still passed by value. Instead,

adding [:,:] ensures that no new memory is allocated for band2.

In case after a call, one output argument is not necessary in the subsequent code, the output argument can be

captured using a placeholder:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 174

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

13.5. WRITING NUMERICALLY STABLE PROGRAMS Chapter 13

[band1,_] = subband_decomposition(input)

This way, in future versions, the compiler may optionally specialize the function subband_decomposition, by

generating a version in which the second output parameter is not being calculated.

As mentioned in section 4.8.3, the output arguments of functions can be chained using the spread operator ... For

example,

function [band1_out, band2_out] = process(band1, band2)
...

endfunction

process(...subband_decomposition(input))

This way, it becomes unnecessary to store the output arguments in intermediate variables.

13.5 Writing numerically stable programs

Here, we consider numerical stability and software program stability. To ensure numerical stability, programs may

need to make use of the following functions:

• isfinite(x): checks whether variable x is finite (i.e. not infinite and not NaN “not a number”).

• isinf(x): returns true only if the variable x is infinite. Infinities are used to represent overflow and divide-

by-zero.

• isnan(x): returns true only if the variable x is “not a number”. The NaN encoded floating point numbers

have no numerical value. They are produced by operations that have no meaningful result, like infinity minus

infinity.

Remark that, by default, GPU computation engines, flush denormal floating point values to 0. Practically, this

means that if the result of a single-precision floating-point operation, before rounding, is in the range −2−126 to

+2−126 (or −1, 175×10−38 -1, 175×10−38), it is replaced by 0 (also see section 2.2.1). To avoid potential underflows,

it maybe necessary to pre-scale the input data to a good“working”range, before numerical operations are performed.

CPU computation engines may allow for denormal numbers (depending on the setting of the compiler, and whether

SIMD instructions are used etc.), yielding more accurate numerical results, but at a decreased performance: working

with denormal floating point numbers can be up to 100 times slower than in case of normalized numbers. Hence,

in case numerical problems are an issue, it may be good to compare the results of the CPU and GPU computation

engines.

Software stability: there are four causes for a Quasar program to be interrupted:

1. Errors (generated using the error statement or by Quasar runtime functions). Currently, error handling (e.g.

try-catch blocks) are not supported yet. Hence when an error is generated, the program is automatically

terminated.

2. Out-of-memory : when the system (or GPU) has not enough memory, the program will be halted. By default,

Quasar attempts to move memory from the GPU to the system memory when it detects that a memory

allocation may result in an out-of-memory error. In some cases, this may not be possible (e.g., a __kernel__

function that uses more memory than available on the GPU).

3. Stack overflow : usually when a recursive function calls itself in an endless loop. For example, the function:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 175

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

13.6. WRITING DETERMINISTIC KERNELS Chapter 13

f = x -> f(x)

will result in a stack overflow error.

4. Abusing ’unchecked modifiers: the ’unchecked modifier (see section 2.4.1) is introduced for memory accesses

where it is completely certain that a kernel function will not go out of bounds of the vectors/matrices/etc. This

gives a performance benefit of up to 30% or more for certain functions. When the kernel function breaches the

boundaries, the program may either result an error (e.g. cudaUnknownError), or crash. To prevent this kind

of problems, one can 1) either remove the ’unchecked modifiers from the kernel function arguments, or 2)

run the program using the CPU computation engine, with the flag COMPILER_PERFORM_BOUNDSCHECKS=true

(see table 17.3). In the second case, Quasar will report an error and some information on the variables that

violate the boundary conditions, so that abuses of the ’unchecked modifier can be fixed.

An alternative solution is to temporarily replace ’unchecked by ’checked, this will instruct Quasar to perform

bounds checking at any time for the specified variable, irrespective of the COMPILER_PERFORM_BOUNDSCHECKS

variable.

To catch errors, it may be useful to place assertions inside kernel or device functions:

function [] = __kernel__ kernel (pos : ivec3)

b = 2

assert(b==3)

endfunction

In this example, the assertion obviously fails. Quasar breaks with the following error message:

(parallel_do) testkernel - assertion failed: line 23

13.6 Writing deterministic kernels

When writing kernels involving atomic operations, the outcome may depend on the order of the instructions being

executed. This is due to the floating point arithmetic often not being associative: in general (A + B) + C! =

A + (B + C) . Due to the parallelism, the order of the instructions cannot be controlled. The nondeterministic

nature may not be a desired property of the algorithm. The following parallel reduction implementation exhibits

this problem.

function y : scalar = __kernel__ parallel_reduction(x : vec'unchecked,

acc : accumulator, val0 : scalar, pos : int, blkpos : int, blkdim : int)

val = val0

bins = shared(blkdim)

for m=pos..32*blkdim..numel(x)-1 % step 1 - parallel sum

val = acc(val, x[m])

endfor

bins[blkpos] = val

syncthreads % step 2 - reduction

bit = 1

while bit < blkdim

index = 2*bit*blkpos

if index + bit < blkdim

bins[index] = acc(bins[index], bins[index + bit])

endif

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 176

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

13.6. WRITING DETERMINISTIC KERNELS Chapter 13

syncthreads

bit *= 2

endwhile

% write output

if blkpos == 0

y += bins[0]

endif

endfunction

The problem is here that y += bins[0] is an atomic update operation. It is performed only once per block, however

multiple blocks may interfere causing the order of the addition operations to be altered. The solution is here to

avoid the atomic update altogether, and store the result per block in an output vector (with as length the number of

blocks in the input vector). Then, in a separate kernel launch of parallel_reduction, the block sums are summed

separately. To reduce the size of the blocksums vector, grid-strided loops can be used (see section §9.2.3.1).

Thanks to the specific way that updates are performed in shared memory and due to the thread synchronization,

the updates of bins are guaranteed to be deterministic! This shows that it is possible to remedy a kernel function

and ensure that its output is deterministic.

When accumulation in shared memory with thread synchronization (or similarly, warp shuffling) is not one of the

options for a specific kernel, an alternative is to use integer or fixedpoint representations. This way, we have success-

fully solved some depth map determinism problems during depth map calculation in computer vision applications.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 177

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 14

Chapter

14

Built-in function quick reference

Some built-in functions are listed in table 14.1. More runtime library functions are given in table 14.2. For a

detailed explanation of the functions, we refer to the Documentation Browser (F1 in Redshift).

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 178

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 14

Table 14.1: Common built-in functions (most functions are self-explanatory). Functions with asterisk (*) are
accessible from __kernel__ and __device__ functions.

abs (*) absolute value/modulus sum (*) sum of the elements
acos (*) cumsum cumulative sum
atan (*) prod product of the elements
atan2 (*) cumprod cumulative product
ceil (*) mean
round (*) linspace
cos (*) lerp (*) linear interpolation
sin (*) dotprod (*) vector dot product
exp (*) zeros (*)
exp2 (*) power of two ones (*)
floor (*) rand uniformly distributed
mod (*) modulo randn normal distributed
frac (*) fractional part cell cell matrix
log (*) eye identity matrix
log2 (*) logarithm base 2 size (*) dimensions of object
log10 (*) logarithm base 10 numel (*) number of elements =prod(size(x))

max (*) complex (*) complex value
min (*) real (*) real part
saturate (*) clamps to [0,1] imag (*) imaginary part
sign (*) sign of the number float (*) conversion to float (kernel function)
sqrt (*) int (*) take integer part
tan (*) isnan (*) value is NaN (not a number)
angle (*) angle of a complex number isinf (*) value is infinite
transpose matrix transpose isfinite (*) value is finite
herm transpose Hermitian transpose maxvalue (*) maximum value for the specified type
conj (*) conjugate minvalue (*) minimum value for the specified type
copy performs a shallow copy repmat repeat matrix
deepcopy performs a deep copy reshape reshape matrix
squeeze removes singleton dimensions shuffledims swaps dimensions
fft1 / ifft1 1-dimensional (I)FFT type returns data type of object
fft2 / ifft2 2-dimensional (I)FFT object creates an empty structure
fft3 / ifft3 3-dimensional (I)FFT sprintf build a C-style format string
shared (*) allocation of shared mem. printf print a C-style format string
shared zeros (*) shared mem with zero init. strcat string concatenation
and (*) bitwise AND sscanf parses using a C-style format string
or (*) bitwise OR factorial the factorial function
xor (*) bitwise XOR inv matrix inverse
shl (*) bitwise left shift svd singular value decomposition
shr (*) bitwise right shift serial do serial execution
not (*) bitwise inversion parallel do parallel execution
mirror ext (*) mirroring extension max block size see section 2.4.4
periodize (*) periodic extension assert runtime assertion
tounicode converts vec to a UNICODE string schedule manual run-time scheduling function
toascii converts vec to an ASCII string mat2cell converts from matrix to cell matrix
fromunicode converts UNICODE string to vec cell2mat converts from cell matrix to matrix
fromascii converts ASCII string to vec

ind2pos converts linear index to n-D coords

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 179

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 14

imread reads an image img=imread("filename.png")

imwrite writes an image imwrite("filename.png", data)

imwrite("filename.png", data, [minval,maxval])

imshow shows an image imshow(img)

imshow(img, [minval,maxval])

eval Quasar expression evaluation y=eval("x->2*cos(x)")

save Save variables to file save("out.dat",A,B,C)

load Load variables from file [A,B,C]=load("out.dat")

dir Lists files in a directory files=dir("/home/*.png")

tic start timer tic()

toc stop timer and print elapsed time toc()

fopen opens file for reading/writing f=fopen("out.dat","wb")

fread reads from a file data=fread(f,[24,8],"float32")

fwrite writes to a file fwrite(f,data,"float32")

fclose closes a file fclose(f)

fgets reads one line in text modus from a file y=fgets(f)

plot generates a plot plot(x,y)

title set title of the plot title("text")

xlim sets ranges for the x-axis xlim([0, 10])

ylim sets ranges for the y-axis ylim([-pi, pi])

xlabel sets the x-axis label xlabel("x")

ylabel sets the y-axis label ylabel("y")

legend displays a legend legend("serie 1", "serie 2")

disp display a matrix disp(A)

print print text to the console print A,...

error generate an error error A,...

pause pauses program execution for n msec. pause(0.5)

Table 14.2: Runtime library functions.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 180

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 15

Chapter

15

Functional image processing in Quasar

In this section we will highlight some functional image processing abilities of Quasar. Through the combination

of generics, automatic function inlining and avoidance of function pointers, Quasar permits practical functional

programming of image processing algorithms, while at the same time exploiting the parallelism and generating

efficient CPU/GPU code. As a starting point, we will consider all values (e.g. scalars, integers, vectors) to be

application of functions. These functions can be constant functions, functions with no parameters etc. Rather than

passing values to functions, functions themselves are used as parameters for other functions. This allows the caller

to choose whether a constant or a non-constant input is used. Moreover, intermediate results can be calculated

only when needed, rather than precalculated. Additionally, in some cases, it is more efficient to evaluate functions

more than once (e.g., because the memory cost involved with storing the intermediate results is much higher than

the calculation time of these results).

The concept of a (2D) image can be made explicit by a function type definition:

type image : [__device__ ivec2'const -> vec3]

Here we say that an image is a function that maps from a two-dimensional integer (ivec2) domain to a three-

dimensional (say, RGB) domain. Note that the types ivec2 and vec3 are short-hand notation for vec[int](2)

and vec[scalar](3).

Similarly, the concept of an algorithm can be defined as:

type algorithm : [__device__ (image, ivec2'const) -> vec3]

The algorithm takes an image and a 2D position as an input and calculates the components of the output at that

position. Note that it would be more easy to define

type algorithm : [__device__ (image) -> image]

, which is also viable. However, the algorithm definition incorporating a position vector allows to separate the

computational approach (e.g., pixel-based parallel, block-based parallel, etc.) from the algorithm definition. We

can then design additional infrastructure for this task, by the following abstraction:

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 181

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 15

type application : [(image, algorithm) -> image]

This can be read as: an application uses an algorithm to convert an image to another image.

type color_function : [__device__ vec3 -> vec3]

A rasterizer samples an image and converts it back to a cube:

type rasterizer : [(image, ivec3) -> cube]

The function make_image converts an image (of type cube) into a function variable (of type image):

make_image : [cube -> image] =

im_data -> __device__ (pos) -> im_data[pos[0], pos[1], 0..2]

By declaring the resulting function as a device function (__device__) we can ensure that native device-specific

code is generated for the function. But there is more: the Quasar compiler performs automatic function inlining

and function pointer reduction, so that there is often no performance loss experienced due to the use of function

variables. This allows algorithms to be specified in a flexible and generic way.

We can define a ‘casting’ operator to call the function make_image directly.

reduction (x : cube) -> image(x) = make_image(x)

Similarly, we can write a function to perform a point-wise operation on an image:

pointwise_op : [color_function -> algorithm] =

fn -> __device__ (x, pos) -> fn(x(pos))

The pointwise operation will apply a given color processing function (color_function) to every pixel in the image.

Similarly, we can define an operation that translates the image:

translate : [vec2 -> algorithm] =

shift -> __device__ (x, pos) -> x(pos + int(shift))

The translate function takes a 2-dimensional offset vector and returns an algorithm (which can then be applied

to the image). In functional programming, lazy evaluation is preferred over eager evaluation, and therefore we will

“concatenate” several image processing algorithms in a chain, and at the very end perform the computation. In

this way, the Quasar compiler will obtain several degrees of freedom in optimizing the code. For example, it is not

necessary to store intermediate results in memory.

As a next algorithm, we define a horizontal mean filter (with as input parameter the size of the local window):

function algo : algorithm = mean_filter_hor(N : int)

norm_factor = 1.0 / N % normalization factor

function y : vec3 = __device__ algo(input : image, pos : ivec2)

y = [0., 0., 0.]

for n=-int(N/2)..int(N/2)

y = y + input(pos + [0,n])

endfor

y = y * norm_factor

endfunction

endfunction

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 182

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

15.1. EXAMPLE: TRANLATION AND FILTERING Chapter 15

Together with the corresponding vertical mean filter:

function algo : algorithm = mean_filter_ver(N : int)

norm_factor = 1.0 / N % normalization factor

function y : vec3 = __device__ algo(input : image, pos : ivec2)

y = [0., 0., 0.]

for n=-int(N/2)..int(N/2)

y = y + input(pos + [n,0])

endfor

y = y * norm_factor

endfunction

endfunction

we can then easily calculate mean filters with N x N-masks, because the mean filters are separable. Next, the

compute function converts the image back to its pixel representation (also called rasterization):

compute : rasterizer =

(x, sz) -> (y = zeros(sz); parallel_do(sz, __kernel__ (pos : ivec2) -> y[pos[0],pos[1],0..2] = x(
pos)); y)

Essentially, the function evaluates the input function for all positions within the domain.

Next, we define two operations that apply a specified processing algorithm to an image. In the first algorithm, we

“defer” the processing, which means that the processing is only applied when the compute function is applied.

apply_deferred : application =

(x, p) -> __device__ (pos) -> p(x, pos)

In a second operation, we calculate the intermediate result:

apply_immediate : [vec3 -> application] =

sz -> (x, p) -> make_image(compute(apply_deferred(x, p), sz)

Then, our goal is to be able to subsequently apply several algorithms. To simplify the calculation of the end result,

we define the definition-assignment operator :=

reduction (y : cube, x : image) -> (y := x) = y = compute(x, size(y))

This assignment will lead to the result being evaluated, resulting in a variable of type cube. Finally, to concatenate

several independent operations, we define the pipelining operator |>:

symbolic immediate, deferred

reduction (x : cube, y) -> (x |> y) = make_image(x) |> y

reduction (x : image, a : algorithm, sz : ivec3) -> (x |> immediate(sz, a)) = apply_immediate(sz)(x, a
)

reduction (x : image, a : algorithm) -> (x |> deferred(a)) = apply_deferred(x, a)

Here, symbolic introduces some symbols that will be defined later using reductions.

15.1 Example: tranlation and filtering

As an example, we demonstrate the functional image processing framework in applying a translation and a mean

filter to an input image. The algorithm specification is then:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 183

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

15.1. EXAMPLE: TRANLATION AND FILTERING Chapter 15

im = imread("image.tif")

im_out := im |> deferred(translate([64, 64])) _

|> deferred(mean_filter_ver(7)) _

|> mean_filter_hor(7)

imshow (im_out)

This approach allows to easily describe image processing pipelines, in which different filtering/processing building

blocks are connected to each other. Additionally, it allows the Quasar compiler to optimize the entire pipeline at

once.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 184

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 16

Chapter

16

The Quasar runtime system

The Quasar environment contains both a compiler (see 17) and a runtime system. The runtime system manages the

computation devices and also makes sure that Quasar code is efficiently executed on the selected/available devices.

Note that the compiler and runtime system are not entirely separated: the runtime system exploits information

(metadata) generated at compile-time, e.g., to improve scheduling options.

Most data structures (e.g., primitive types, user-defined types, functions, arrays, matrices, . . .) support automatic

transfer to the GPU. For the run-time system, this implies some “bookkeeping” (overhead) at runtime. For example,

to keep track of the most “recent” version of a data structure, both a CPU pointer and a GPU pointer may be

required, plus a set of dirty bits.

Two versions of the runtime system exist and are both in use

• Standard engine (v1 runtime): offers single GPU CUDA and OpenMP CPU support.

• Hyperion engine (v2 runtime): offers OpenCL, multi-GPU CUDA/OpenCL and two-layer threaded OpenMP

CPU support. For the Hyperion engine, most built-in core routines (such as sum, prod functions and im-

plementation of matrix operators) are implemented in Quasar itself. The Hyperion engine is therefore easily

extensible to future accelerator devices. The Hyperion engine supports multi-GPU and allows combining

OpenCL GPUs with CUDA GPUs (for example on NVidia Optimus laptops, Intel HD Graphics with the

NVidia Geforce GPU).

Compared to the Standard engine, the Hyperion engine has a more efficient object graph management system,

allowing clustering objects into subgraphs which allow simultaneous transfers of objects to the GPU, with better

management and support of GPU memory models (pinned memory, unified memory etc).

Apart from implementation differences, there are no functional differences between the two runtime engines, i.e., a

program developed on runtime v1 works on runtime v2 (and vice versa).

The runtime system can be selected through the device selector, for example in the Redshift IDE. Hyperion devices

are listed explicitly as v2, e.g. CUDA v2, OpenCL v2, . . .

In general, the runtime system performs several tasks:

• Program interpretation and execution

• Providing an abstraction layer for computation device (e.g., CUDA, OpenCL, OpenMP)

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 185

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

16.1. PROGRAM INTERPRETATION AND EXECUTION Chapter 16

• Performing object management (reference counting, grouping memory transfers etc.)

• Performing memory management (allocation, transfer from CPU ->device, device ->CPU, memory pinning)

• Load balancing/runtime scheduling of parallel tasks

The above components will now be discussed in more detail in the following subsections.

16.1 Program interpretation and execution

A Quasar program consists of a sequence of high-level “instructions”, for which an instruction often involves an

expression evaluation. These instructions are either compiled to .Net byte-code or interpreted by the Quasar

interpreter.

The actual time-consuming calculations are performed by invoking kernel or device functions. In particular, a

kernel function is a function that acts on one element of the data, and that is repeated (in parallel) to all other

elements. Consider the point-wise multiplication of matrices A .* B. Then a kernel function computes the product

of two elements at a given position ‘pos’: Y[pos] = A[pos] * B[pos]. This kernel function is internally defined

in Quasar as follows:

pw_multiply = __kernel__ (A:mat,B:mat,Y:mat,pos:ivec2) -> Y[pos]=A[pos]*B[pos]

Now, when the interpreter asks the computation engine to calculate the product of two matrices, the kernel function

‘pw multiply’ is scheduled. The same occurs for the assignment Y[pos]=...: this operation is also performed in a

kernel function. Eventually, the runtime system obtains a “stream” of kernel function invocations:

kernel1 -> kernel2 -> kernel3

The runtime system is then responsible for launching these kernels on the data.

16.2 Abstraction layer for computation devices

The run-time system has several back-ends: for CUDA, OpenCL and OpenMP. For every kernel function, the

Quasar compiler typically generates code for different targets. However, the high-level instructions of a Quasar

program are target-independent (even when compiled to .Net bytecode), which allows a Quasar program to be

easily retargetted during runtime to other devices.

There are a set of run-time parameters that allow controlling the different run-time back-ends:

• Enable concurrent kernel execution (CKE). This mode has specific meaning depending on the back-end:

– For CUDA back-ends, the CKE mode uses CUDA streams and the CUDA asynchronous programming

model. The streaming is performed completely automatically by the run-time system (by tracking de-

pendencies). When necessary, inter-stream event synchronization is also performed.

– For OpenCL back-ends, CKE relies on the OpenCL event system to specify that kernel functions that

need to executed in parallel.

– For CPU back-ends (Runtime v1), the CKE mode has no effect.

– For CPU back-ends (Runtime v2 - hyperion engine), the CKE mode causes kernel functions to be executed

in different CPU threads, in a two-level concurrency model: kernel functions are executed in parallel on

different threads, however, each invididual kernel function may use a fixed number of OpenMP threads.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 186

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

16.3. OBJECT MANAGEMENT Chapter 16

For example, for an 8-core processor with hyperthreading enabled, 2 kernel functions can be executed in

parallel, running the calculations each on 4 OpenMP threads, enabling efficient use of the CPU. These

configuration parameters can be set in the hyperion device configuration file.

• Enable CUDA pinned host memory : if enabled, pinned host memory is used automatically for critical memory

transfers.

• Enable CUDA 16-bit floating point textures: the use of 16-bit floating point textures reduces storage space.

Note that this setting requires the use of hwtex_* modifier (See section §9.4).

• Enable OpenMP multi-threading with N CPU threads: enables OpenMP multi-threading on multicore proces-

sors, with the specified number of OpenMP threads

• GPU scheduling mode: controls the runtime behavior in circumstances of GPU sharing and/or high memory

usage. The following modes are available:

– Maximize Stability : in this mode, certain operations may be slowed down when the GPU is running out

of memory (e.g. by automatically copying memory back to the CPU in order)

– Maximize Performance: in this mode, the slow down is prevented and instead a run-time error is gener-

ated

• GPU memory model : controls how aggressively the runtime allocates memory. The following options are

available.

– Small footprint : the run-time memory manager is extremely conservative in memory allocations

– Medium footprint : default mode for the memory manager

– Large footprint : allocates device memory aggressively, leaving limited GPU memory to other processes.

Use this mode when you intend to allocate many very large memory blocks.

• Default image codec provider : selects between GDI+ and GTK+ for coding and decoding images. GDI+ and

GTK+ support different sets of image codecs. Some image formats are better supported by GDI+, other

formats are better supported by GTK+ (using libjpeg, libtiff, libpng etc).

• Use OpenGL for visualization: when enabled, all rendering is accelerated using OpenGL. Note that OpenGL

is currently not enabled in most terminal sessions (e.g. Windows remote desktop, Linux SSH -X)

• OpenGL anti-aliasing mode: specifies the anti-aliasing mode to be used for the OpenGL context (mainly

useful when rendering lines and points).

16.3 Object management

Quasar has a custom object system to represent the internal data. There are different built-in object types:

• Scalar types (scalar, int)

• Matrix types (real-valued, complex-valued)

• Function types (functions are first-class variables and can also store data through function closures).

• Cell matrix types: a structured way for storing variables of all other types (similar to Matlab/Octave cell

matrices)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 187

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

16.4. MEMORY MANAGEMENT Chapter 16

• Untyped objects: user-defined data types, useful for rapid prototyping

• Typed objects: user-defined data types, same but more powerful

• String types: limited support currently.

Objects can contain references to other objects. Circular references are also allowed (although the handling of them

is not fully implemented at this time). An important feature is that all object types are transparently accessible

from all computation devices. For example, in contrast to many other GPU libraries, Quasar makes no distinction

between CPU data types and GPU data types. For efficiency, restrictions apply, for example untyped objects cannot

be accessed from the device because runtime type checking would cause a significant amount of overhead. Instead,

the runtime is able to decide whether a given object should reside in CPU or GPU memory or both. This means

that data needs to be transferred from/to the device without the user even knowing it (of course this information is

still available through profiling - and the run-time system can be controlled programatically, see section 16.7). The

object and memory management systems are responsible for these transfers. The object system then has to track

the references between the objects. Typically, when one object is accessed in device memory, all objects that are

referenced also need to be copied to the same device memory. To make sure that this is performed efficiently, the

objects are “clustered” so that the complete object graph can be transferred in one memory copy operation.

16.4 Memory management

When executing kernels on a given data set, the operands of the kernel function may or not reside in the correct

memory for the device (e.g., GPU memory). This requires memory management.

The memory manager is responsible for allocating memory in device/CPU memory and for transferring data from

the CPU to the device. When the device is running out of memory, it may also be necessary to transfer data back

from the device to the CPU.

The runtime scheduler then has to ensure that 1) the memory manager is doing the correct task (so that all

required data is in the correct memory before a given kernel is launched) and 2) that the kernels are properly

executed according to the data dependencies.

Both tasks of the runtime scheduler actually interfere - for example, it is possible that the CPU requests to release

memory that is still used in one of the asynchronously running kernels. The same applies to data that needs to be

transferred from or to the GPU. The runtime scheduler then has to ensure that both the CPU and the different

kernels have a consistent view on the data.

Therefore, Quasar has a distributed memory system: an object may reside in the memory of different computation

devices at the same time. As long as read accesses are considered, this does not pose any problems on its own. The

main difficulties are rather: 1) dealing with memory allocation requests when there is not sufficient device memory

available, 2) avoiding memory fragmentation and 3) making sure that no memory blocks are released that are still

in use by an asynchronous kernel.

Different memory allocation algorithms are automatically used by the runtime system. The CPU engine uses a

garbage collector with 3 generations (short term, mid term and long term). Because of the (relatively) scarce GPU

device memory, the CUDA computation engine has a new memory allocation algorithm that relying on reference

counting instead of garbage collection. This allocation algorithm is also optimized for middle (>1024) to large

(>100MB) data allocations.

In some cases, the device may run out of memory. If this happens, some (idle) memory blocks are selected to be

transferred back to the CPU memory. Therefore, the least-recently-used (LRU) strategy is adopted (taking into

account which memory blocks are currently in use by kernels) and an optimization takes place to minimize the

amount of memory that needs to be copied to the CPU.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 188

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

16.5. LOAD BALANCING AND RUNTIME SCHEDULING Chapter 16

However, in some cases, the memory fragmentation and size of the working set for a kernel are too large so that

moving memory becomes impractical. In this case, an error report is currently displayed:

Amount of pinned memory: 398,131,200 bytes

Freelist size: 6 memory blocks

Largest free block: 67,665,920 bytes, insufficient to hold request size of 132,710,400 bytes

Process total: 736,493,568, Inuse: 580,608,000 bytes, Free: 155,885,568 bytes;

Device total: 1,010,368,512, device free: 167,772,160

Chunk 0 size 67,108,864 bytes: Fragmentation: 47.8%, pinned: 0 bytes (0.0%), free: 17,342,464 bytes
(25.0%) Chunk 1 size 134,217,728 bytes: Fragmentation: 0.0%, pinned: 132,710,400 bytes (98.0%),
free: 1,507,328 bytes (1.0%)

Chunk 2 size 268,435,456 bytes: Fragmentation: 0.0%, pinned: 132,710,400 bytes (49.0%), free:
36,192,256 bytes (13.0%)

Chunk 3 size 266,731,520 bytes: Fragmentation: 32.9%, pinned: 132,710,400 bytes (49.0%), free:
100,843,520 bytes (37.0%)

The solution is then to modify the Quasar program such that smaller (or less) memory blocks are used (for example,

by splitting images in smaller tiles). An alternative is to change the memory allocation model to “huge memory

footprint”. This way, Quasar will allocate large memory chunks and the possibility that a block does not fit in the

chunks is decreased.

16.5 Load balancing and runtime scheduling

The runtime scheduler defines the order of the kernel launches and whether kernels can be executed concurrently.

Therefore, the scheduler also tracks the different data dependencies between subsequent kernels. At the core of the

runtime scheduler is the command queue. The command queue is a first-in first-out queue that either contains an

individual kernel launch or a memory transfer operation. When kernel and device functions are scheduled, load

balancing is performed an an appropriate computation device is selected based on several parameters.

The runtime scheduler aims at distributing the kernel functions over the available computation devices, taking full

advantage of their possibilities.

16.6 Optimizing memory transfers with const and nocopy

To suppress the need to unnecessary memory copies, kernel and device function parameters can be annotated with

the modifiers ’const and ’nocopy. The meaning of these modifiers is as follows:

• ’const: Indicates that the parameter is constant and will not be changed inside the kernel function.

• ’nocopy: Indicates that the input values of the parameter (for example of a vector or matrix type) are not

used. This is useful when implementing functions that completely overwrite the content of a vector/matrix

without reading the original values of this vector/matrx.

The ’const avoids that, after execution of the kernel/device function, function parameters are being copied back

to the host (or equivalently, to another GPU). On the other hand, ’nocopy avoids that the memory is being copied

from the host to the device (or equivalently between GPUs).

The compiler automatically detects parameters that can be annotated with ’const and ’nocopy, so therefore there

is no direct need to use these modifiers in user code. However, the modifiers may still be of use for indicating the

calling interface of the function: the calling function then knows that e.g. the given function does not change the

value of one of the parameters, or that the input value of one of the parameters is not used directly.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 189

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

16.7. CONTROLLING THE RUNTIME SYSTEM PROGRAMMATICALLY Chapter 16

Finally, the reader may have noted that it could also be useful to have a nocopy at input and output modifier; this

could serve as a local “scratch memory” to be used by the kernel function (e.g., as used in the implementation of

various linear algebra routines). In Quasar, there is no special modifier for this purpose, it suffices to not declare

any access modifier - as long as the scratchpad memory will not be used by another function, the memory transfer

will not be performed.

16.7 Controlling the runtime system programmatically

Sometimes it is useful to control the runtime system from Quasar code. This can be achieved using the following

code attributes:

• {!sched mode=cpu|gpu|fpga}: sets the scheduling mode manually, instructing the scheduler to run the

following kernels on the specified device.

• {!sched gpu_index=1}: sets the GPU index (within the range 0..num_gpus-1) for the next kernel function.

This feature is useful for multi-GPU programming (see section §11).

• {!sched}: switches back to automatic scheduling

• {!alloc mode=auto|cpu|gpu}: sets the memory allocation mode for the next allocation request.

• {!alloc type=auto|pinnedhostmem|unifiedmem|texturemem}: sets the allocation type for the next alloca-

tion request. This function has only effect when the allocation mode is GPU. Pinned host memory is memory

that avoids paging and that can more efficiently been transferred to/from the GPU. Unified memory is auto-

matically page-mapped between CPU and GPU (requires CUDA 6.0 or higher). Texture memory (to be used

with access modifiers ’hwtex_* (see section 9.3), often allows more efficient data access patterns.

• {!transfer vars=a; target=cpu|gpu}: instructs the runtime system to transfer the specified variable to

the CPU (or GPU). vars may refer to an expression (for example, a[index], in which case the specified

element of the cell array is transferred).

• {!transfer vars=a; target=cpu|gpu; gpu_index=1}: instructs the runtime system to transfer the speci-

fied variable to the GPU with the specified index.

Note that the above functions are provided for fine-tuning implementations. However, the code attributes should

be used with care, because inappropriate usage may degrade the performance and cause unexpected errors in some

cases. Several aspects, such as the memory location of a variable, can be visualized and analyzed in the variables

window in the Redshift IDE.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 190

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 17

Chapter

17

The Quasar compiler/optimizer

An overview of the Quasar compilation process is given in the figure below. After parsing, type inference is performed

in order to determine the type of all the variables and expressions in the program. Next, a function transform pass

is performed, with several optimization passes (see section 17.1). Then, kernel and device functions are processed

using a kernel transform pipeline which allows the generation of target-specific code and which enables target-specific

optimizations (either built-in or user-controlled). After the kernel transformations, the generated target-specific code

is translated to intermediate C++, CUDA, OpenCL or LLVM code, in order to be compiled using one of the back-

end compilers. The output of the function transform pass is intermediate Quasar code that can further be translated

to CIL bytecodes (resulting in a standalone executable that can executed by MONO or .Net).

The function and kernel transforms will be discussed in the following sections in more detail.

17.1 Function Transforms

The Quasar compiler supports several function transforms:

• Automatic loop parallelization/serialization: performs automatic parallelization or serialization of loops within

a function. Both for-loops and while-loops can be handled.

• Automatic kernel generator : vectorizes matrix expressions and generates corresponding kernel functions.

• Function optimization: performs ‘generic’ function optimization steps, such as constant folding, index packing,

loop unrolling and elimination of dead branches etc.

• Function data transfer optimizer : annotates arguments of functions in such a way that the run-time system

has less work (e.g., less memory copies required). Typically, when a matrix is only read from, its dirty bit

does not need to be changed (possibly reducing the required number of data transfers)

• Boundary accessor transform: adds boundary accessor functions (see above) for newly generated array indexers

• Lambda to regular function converter : converts lambda expressions to regular functions that can be further

optimized using the kernel transform pipeline, allowing the lambda expressions to be treated and optimized

in the same way as regular functions

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 191

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.1. FUNCTION TRANSFORMS Chapter 17

��������	
����
����

��������	

�	�
�

���
���

����������

������	����	��

����������

�
	����	�

���	������

�����������

���	��

���	������

������	���

�
	����	�

��������

�����������

��� �!"#�

$��%&�	'

��������

((�$��%&�	'

(()*�$��%&�	'

���

� +��	�(�$��%&

�	'�,��-
��-���.

/������'����0

��(�$�����'�

12�
2&��3���

�
	����	�4

1��5&��3��

�
	����	�4
�0

Figure 17.1: Overview of the Quasar compiler

• High level inference: performs high-level inference of certain operations.

• Automatic function instantiation: automatic instantiation/specialization of functions

• Automatic kernel specialization: automatically specializes kernel functions

• Function inlining transform: inlines function calls annotated with the $inline meta-function (see sec-

tion §8.6), uses heuristics to inline functions automatically depending on the optimization level

• Dynamic memory handler : manages and checks the use of dynamic kernel memory inside kernel functions.

• Generic function predicator : detects functions (typically device/kernel functions) that are generic and that

need to be specialized

• Imperfect loop optimization: converts certain types of imperfect loops to perfect loops that can be parallelized

using the automatic loop parallelizer.

• Device function parallelizable test : checks whether a device function can be executed in parallel (useful for

automatic loop parallelization)

• Shared memoy promotion: modifies kernel functions to use shared memory as a cache, typically due to the

use of shared memory designators (see 9.2).

• Modular optimization framework : a group of interprocedural optimizations, such as schedule reordering opti-

mizations, memory resource optimization and kernel fusion (see section 17.1.6).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 192

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.1. FUNCTION TRANSFORMS Chapter 17

• Kernel post-processor : invoking the kernel transform pipelines and generating target-specific code.

Some of the function transforms are highlighted below.

17.1.1 Automatic For-Loop Parallelizer (ALP)

The ALP automatically parallelizes multi-dimensional loops (of arbitrary dimension) in the code, generating a

kernel function and corresponding parallel_do call. In case of dependencies between the iterations of the for-loop,

it is also possible that a serial_do call is generated. In that case, the loop will be executed serially on the CPU.

The ALP attempts to parallelize starting with the outside loops. The ALP program automatically recognizes one,

two or higher dimenional for-loops, and also maximizes the dimensionality of the loops subject to parallelization.

Automatic Parallelization Error Messages During parallelization of for-loops, several compiler errors may

be generated. These compiler errors can be classified in four categories: 1) errors related to dependency problems,

2) errors related to features that are currently not supported by the ALP, 3) issues related to the use of dynamic

kernel memory and 4) attempts to call host functions from the loop. The errors are now discussed in more detail:

1. Dependency problems:

In case of dependency problems, the loop cannot be parallelized but will rather be serialized. In some cases,

it is useful to modify the algorithm to get rid of the dependency.

• Parallelization not possible: dependency on iterator variable!

It is also possible to force a loop to be parallelized irrespective of the warnings, using

{!parallel for}

. Note that this is at the responsibility of the user - the result may be incorrect if there are data races.

2. Unsupported features:

Some features are currently unsupported by the loop parallelizer. For example, the types of the variables must

be determined statically.

• Operations involving strings can currently not be parallelized/serialized.

• Operations involving objects can currently not be parallelized/serialized.

• Construction of cell arrays can not be parallelized/serialized.

• Statement can not be parallelized/serialized. Consider placing this outside the loop.

• Cannot use reserved variable name in this context.

• Parallelization/serialization not possible because the variable is polymorphic (not a unique type).

• Inner loop break detected. Loop cannot be parallelized/serialized.

• continue detected. Loop cannot be parallelized/serialized.

• Parallelization not possible because variable is not locally defined.

3. Kernel dynamic memory :

Other parallelization operations result in dynamic memory use inside the kernel (which may degrade the

performance on, e.g., a GPU). In particular, without dynamic kernel memory (see section §8.3), matrix

expressions such as A[:,2], B[3,4,:] can not be parallelized. This is because the size of the result is

unknown to the compiler. When the result is a small vector (of length <= 32), the problem can be solved

using the sequence syntax, with constant lower and upper bounds. For example: A[0..4,2], B[3,4,0..2].

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 193

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.1. FUNCTION TRANSFORMS Chapter 17

• Operator : can not be parallelized. Consider using [a..b] instead!

• Parallelization of the function requires kernel dynamic memory to be enabled!

• Operator requires dynamic kernel memory.

• Parallelization of the operator not possible: need to know the size of the result of type!

4. Calling host functions:

Host functions cannot be called from a device/kernel function. Consequently, when a host function is directly

called from a loop (and the host function cannot be inlined), the parallelization fails.

• Function call can not be parallelized! Check if the function is declared with the __device__ modifier!

• Method is not a device function and can therefore not be parallelized/serialized!

• Parallelization/serialization not possible because the specified function is not a device or kernel function!

17.1.2 Automatic Kernel Generator

The automatic kernel generator extracts expression patterns that are used once, or multiple times throughout the

code. For example:

function Z = f(A:mat,X:mat,Y:mat)

Z = A.*X+Y+4

endfunction

In this case, the expression A.*X*Y+T will be extracted and converted to a kernel function that can be evaluated

with one single parallel_do function (instead of multiple kernels being called by the run-time). The generated

kernel function will be:

function Z = opt1(A:mat,X:mat,Y:mat,T:scalar)

function [] = __kernel__ kernel(Z:mat,A:mat,X:mat,Y:mat,T:scalar,pos:ivec2)

Z[pos]=A[pos].*X[pos]+Y[pos]+T

endfunction

Z = uninit(size(A))

parallel_do(sizeof(Z),Z,A,X,Y,T,kernel)

endfunction

Additionally, a reduction is generated internally, allowing the reduction pattern to be reused for later optimizations:

reduction (A:mat,X:mat,Y:mat,T:scalar)->A.*X+Y+T = opt1(A,X,Y,T)

The code is then transformed into:

function Z = f(A:mat,X:mat,Y:mat)

Z = opt1(A,X,Y,4)

endfunction

Another purpose of the automatic kernel generator: the back-ends typically do not know how to handle high-level

expressions such as (A:mat)+(B:mat), therefore this transform converts the operations to low-level calls that can

be handled by the back-end. This may lead to nested kernel function calls, utilizing CUDA dynamic parallelism or

OpenMP nested parallelism (see section §4.4).

The automatic kernel generator is in a certain sense similar to the automatic loop parallelizer, with the main

difference that the kernel generator starts from expressions involving matrices (but no indices) while the automatic

loop parallelizer starts from loops involving matrices with indices (hence scalar values).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 194

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.1. FUNCTION TRANSFORMS Chapter 17

The automatic kernel generator also supports certain aggregation functions, such as sum, prod, max, min. When

such a function is used, for example in expressions as sum(A.*B+C) the compiler will generate a parallel reduction

algorithm to calculate the final result.

17.1.3 Automatic Function Instantiation

The automatic function instantiation step checks for certain conditions in which a (generic) function can be spe-

cialized:

• The function to be called is generic and requires specialization (e.g., because of a contained kernel function

with generic arguments).

• Some of the arguments of the function are generic device functions. In this case, a type deduction is performed

for obtaining the generic parameters. For example, consider calling the following function:

function y = apply[T](x : T, y : T, fn : [__device__ (T,T)->T])

y = fn(x,y)

endfunction

print apply(1,2,(__device__(x,y)->x+y))

Here, the type deduction will find that T==int, so that the function fn ha type [__device__ (int,int)-

>int]. Correspondingly, the function apply can be specialized.

17.1.4 High Level Inference

The high-level inference transform infers high-level information from Quasar programs. High-level here refers to

information on high-level data structure level (like vector/matrix level). The information can then be used in several

later optimization stages.

Consider the following function:

function [output:cube] = overlay_labels(image:cube, nlabels:mat)

output = zeros(size(image))

function [] = __kernel__ draw_outlines(nlabelsk:mat'clamped,pos)

if nlabelsk[pos] == nlabelsk[pos+[0,-1]] && nlabelsk[pos] == nlabelsk[pos+[-1,0]]

%interior pixel

else

%edge pixel

output[pos[0],pos[1],0] = 1

output[pos[0],pos[1],1] = 1

output[pos[0],pos[1],2] = 1

endif

endfunction

parallel_do(size(input,0..1), nlabels, draw_outlines)

endfunction

The program contains some logic for converting a label image (where every segment has a constant value) into an

image where the segment boundaries are all assigned the value 1.

Perhaps without knowing so, the programmer actually specifies a lot of extra information that the compiler can

exploit. A first approach is type inference, which allows the compiler to generate code with “optimal” data types

that can be mapped onto x86/64/GPU instructions.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 195

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.1. FUNCTION TRANSFORMS Chapter 17

However, there is actually a lot more high-level information available. For example, after the assignment output =

zeros(size(image)), we know that size(output) == size(image). Combined with the parallel_do construct,

we can determine that the boundary checks for output are actually unnecessary!

In fact, every statement has a number of pre-constraints, and after processing the statement, some post-constraints

holds. For example, for the transpose function:

y = transpose(x)

% pre: ndims(x) <= 2

% post: size(y) = size(x,[1,0])

For the matrix multiplication:

y = A * x

% pre: ndims(A) <= 2 && ndims(x) <= 2

% post: size(y) = [size(A,0), size(x,1)]

The constraints do not only help the compiler to find out mistakes (such as incompatible matrix dimensions), but

can also be used for controlling the later optimization stages. For example:

for m=0..size(z,0)-1

for n=0..size(z,1)-1

z[m,n] = x[m,n] + y[m,n]

endfor

endfor

If it is known that size(z)==size(x) && size(z) == size(y), then not only the boundary checks can be omitted,

but also the loop can be flattened to a one dimensional loop, resulting in performance benefits on both CPU and

GPU.

17.1.5 Function inlining

Functions can be inlined by annotating the function itself (C style inlining) or by annotating the function call with

the $inline meta function (section §8.6). Marking a function to be inlined can be done using {!auto_inline}:

function [x,y] = __device__ sincos(theta)

{!auto_inline}

[x,y] = [sin(theta),cos(theta)]

endfunction

Alternative, the function can be inlined on a case by case basis (using $inline):

[a,b] = $inline(sincos)(0.3)

In this example, the compile-time expansion will even lead to the result being calculated at compile-time.

The Quasar compiler also uses its own heuristics to automatically inline functions. By default lambda expressions are

inlined differently than functions (for lambda functions {!auto_inline} can not be used). The lambda expression

inlining mode depends on the COMPILER_LAMBDAEXPRESSION_INLINING setting (see section 17.3), which has the

following values:

• Never : never inline any lambda expressions

• Always: automatically inline every lambda expression

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 196

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.1. FUNCTION TRANSFORMS Chapter 17

• OnlySuitable (default): only inlines “simple” lambda expressions that do not have closures.

Note that the back-end compilers may aggressively inline device functions, even without inlining being specified on

the Quasar language level.

17.1.6 Kernel fusion

Nowadays, it is not uncommon that a convolution operation on a Full HD color image takes around 10 microseconds.

However, with execution times so low, for many GPU libraries this has the consequence that the bottleneck moves

back from the GPU to the CPU: the CPU must ensure that the GPU is busy at all times. This turns out to be

quite a challenge on its own: when invoking a kernel function, there is often a comined runtime and driver overhead

in the order of 5-10 microseconds. That means that all launched kernel functions must provide sufficient workload.

Because just a filtering operation on a Full HD image is already in the 5-10 microsecond range of execution time,

many smaller parallel operations (e.g., operations with data dimensions< 512 · 1024) are often not suited anymore

for the GPU, unless the computation is sufficiently complex. In the new features of CUDA 10 it is mentioned:

“The overhead of a kernel launch can be a significant fraction of the overall end-to-end execution time.”

CUDA 10 introduces a graph API, which allows kernel launches to be prerecorded in order to be played back many

times later. This technique reduces CPU kernel launch cost, often leading to significant performance improvements.

We notice however that CUDA graphs are a runtime technique; its compile-time equivalent is kernel fusion. In

kernel fusion, several subsequent kernel launches are fused into one big kernel launch (called a megakernel). In

older versions of CUDA, dependent kernels could not easily be fused, because every kernel execution imposes an

implicit grid synchronization at the end of execution. This grid synchronization could only be avoided by using

CUDA streams which allows independent kernels to be processed concurrently. More recently, grid barriers (which

synchronizes ”all threads” in the grid of a kernel function) have become available, either via cooperative groups (in

CUDA 9) or via emulation techniques. These grid barriers open the way to kernel fusion of dependent kernels.

Obviously, any synchronization point such as a grid barrier involves a certain overhead, a time that GPU threads

spend waiting for other threads to complete. The total overhead can be minimized by minimizing the number

of synchronization points. On the other hand, grid barriers are entirely avoided when there are no dependencies

between the kernels. This automatically means that reordering of kernel launches is an essential step of the automatic

kernel fusion procedure.

The application of compile-time kernel fusion also has several other performance related benefits: when multiple

kernels become one kernel often temporary data stored in global memory can be entirely moved to the GPU

registers. Since accessing GPU registers is significantly faster than reading from/writing to global memory, the

execution performance of kernels can be vastly improved. In addition, the compiler can reuse memory resources

and eliminate memory allocations, essentially leading a static allocation scheme, in which all temporary buffers are

preallocated, prior to launching the megakernel.

The kernel fusion also has a number of complicating factors:

• It is neccessary to determine at compile-time that arrays (vectors, matrices, ...) have the same size. Luckily,

Quasar’s high level inference engine allows to achieve this.

• Kernels are often launched with different data (i.e., grid and block) sizes, while launching a megakernel requires

one size to be passed. In Quasar, this is achieved by performing automatic kernel tiling.

• Kernels often operate on data of different dimensionalities (vector, matrix, ...). In Quasar, this is solved by

performing a kernel flattening transform in combination with a grid-strided loop.

The remedies for different data dimensions each involve a separate overhead, usually in the form of more registers

used by the megakernel. This may lead to register-limited kernel launches, in which some GPU multiprocessors are

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 197

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.2. KERNEL TRANSFORMS Chapter 17

underutilized because of insufficient register memory. Therefore, Quasar includes a dynamic programming based

optimization algorithm that takes all these factors into account.

In short, kernel fusion in Quasar is achieved by placing:

{ ! k e r n e l f u s i o n s t r a t e g y =”smart ”}

inside the parent function of the kernel functions. Important to realize is that all functions called by this parent

function are inlined, so that if the callees launch kernel functions on their own, these kernel fusions can also be fused

into the mega kernel. The compiler therefore sees a sequence of kernel launches and has to determine 1) a suitable

order to launch the kernels and 2) whether the kernels are suited to perform kernel fusion.

When performing kernel fusion, a strategy needs to be passed, which controls the cost function used by the opti-

mization algorithm:

Kernel fusion strategy Purpose

smart Let the Quasar compiler decide what is the best strategy

noreordering Performs kernel fusion, without reordering the kernel launches

minsyncgrid Minimizes the number of required grid synchronization barriers

minworkingmemory Minimizes the total amount of (global) memory required for executing the fused kernel

manual Kernel fusion barriers placed in the code determine which kernels are fused

Kernel fusion barriers {!kernel_fusion barrier} may be added to prevent kernels from being fused. In this case,

M kernels are fused into N kernels with 1 < N ≤M .

Under some circumstances (which also depend on the kernel fusion strategy), the compiler may waive fusion of

certain kernels. The reasons can be inspected in the kernel fusion code transform log, which is accessible through

the code workbench window in Redshift.

17.2 Kernel transforms

Various kernel transforms are available, that are specialized to parallel or serial loops:

• Closure variable promotion pass: promotes closure variables of kernel functions to fully fledges function pa-

rameters, at least whenever possible/advantageous.

• Auto vectorization: automatically vectorizes code, making it more suitable for execution on SIMD processors.

• Branch divergence reducer : converts conditional computations into equivalent branch-free expressions, with

the goal to reduce branch divergence on a GPU

• Kernel flattening : reduces the dimensionality of loops whenever possible. Loops of lower dimensionality are

often more efficient due to the smaller number of registers being used by the resulting kernel function.

• Kernel data access scout : performs some scanning and annotating operations necessary for later optimization

steps.

• Kernel dimension interchange: changes the order of the loops in a multi-dimensional for loop

• Memory coalescing transform: automatically detects lack of memory coalescing and suggests an appropriate

dimension interchange to improve memory coalescing.

• Demultiplexer : splits up the compilation streams, allowing target-dependent code to be generated

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 198

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.2. KERNEL TRANSFORMS Chapter 17

• Kernel tiling : tiles the iterations of a loop; useful for loop unrolling and vectorization. Additional benefits on

CUDA architectures.

• Parallel reduction transform: converts loops with +=, *= etc. accumulation patterns to the parallel reduction

algorithm.

• Parallel dimension reduction transform: same as the parallel reduction transform, but also works for aggre-

gation along one dimension and for parallel prefix sum patterns.

• Local windowing transform: Caches global memory into shared memory, in order to reduce memory access

times. Mainly useful for targetting GPUs

• CPU skeleton generation: Generates skeleton code for the CPU so that the kernel function can run efficiently

on x86/x64 and ARM architectures. The pass may take information generated during previous passes into

account (e.g. to enable vectorization of instructions)

• Boundary accessor transform: adds boundary accessor functions (see above) for newly generated array indexers

• Shared memory caching transform: caches some of the input/output matrices in shared memory. Useful for,

e.g., histogram calculation.

• Remove singleton matrix dimensions: replaces matrices or cubes with singular dimensions by lower-dimensional

versions of those. This allows the indexing to be performed more efficiently (eliminating multiplication oper-

ations with dimension 1).

• Target-specific optimization transform: performs some user-defined target-specific optimizations (usually

based on the $target() meta function).

• Avanced post optimization: scans for several suboptimal patterns generated by other kernel transforms and

replaces these patterns by more efficient versions.

• SIMD processing : automatically vectorizes code, depending on the default vector length for the target archi-

tecture

Some of the transforms are described in more detail below.

17.2.1 Parallel Reduction Transform

The parallel reduction transform (PRT) is specifically useful for GPU target platforms (CUDA/OpenCL), exploit-

ing both the thread synchronization and shared memory capabilities of the GPU. The PRT detects a variety of

accumulation patterns in output variables, such as result += 1.0. The accumulation operator is always an atomic

operator (e.g., atomic add +=, atomic multiply *=, atomic minimum __=, atomic maximum ^^=).

The following is an example of an accumulation patterns where the PRT can be applied:

y = y2 = 0.

for m=0..size(img,0)-1

for n=0..size(img,1)-1

y += img[m,n]

y2 += img[m,n].^2

endfor

endfor

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 199

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.2. KERNEL TRANSFORMS Chapter 17

This loop can be executed in parallel using atomic operations, however this may cause a poor performance. The

parallel reduction transform converts the above pattern to:1

function [y:scalar,y2:scalar] = __kernel__ kernel(img:vec'const,$datadims:int,blkpos:int,blkdim:int)

$bins=shared(blkdim,2)

$accum0=$accum1=0

$m=blkpos

while $m<$datadims

$accum1+=$getsafe(img,$m)

$accum0+=($getsafe(img,$m).^2)

$m+=blkdim

endwhile

$bins[blkpos,0]=$accum0

$bins[blkpos,1]=$accum1

syncthreads

$bit=1

while $bit<blkdim

if mod(blkpos,(2*$bit))==0

$bins[blkpos,(0..1)]=($bins[blkpos,(0..1)]+$getsafe($bins,(blkpos+$bit),(0..1)))

endif

syncthreads

$bit*=2

endwhile

if sum(blkpos)==0

y2+=$bins[0,0]

y+=$bins[0,1]

endif

endfunction

The parallel reduction transform relieves the user from writing complicated parallel reduction algorithms. Accu-

mulator variables can have scalar, cscalar, int, vecX, cvecX and ivecX datatypes. The transform calculates the

required amount of shared memory and ensures that the kernel is not performance limited due to shared memory

pressure. For CUDA 9 (or newer) backends, the parallel reduction transform switches to a warp-shuffling based

algorithm when too many accumulator variables are present. It is even possible to specify per accumulator variable

which parallel reduction algorithm needs to be used:

y = y2 = 0.

for m=0..size(img,0)-1

for n=0..size(img,1)-1

{!kernel_accumulator name=y; algorithm="warpshuffle"}

{!kernel_accumulator name=y2; algorithm="sharedmemory"}

y += img[m,n]

y2 += img[m,n].^2

endfor

endfor

1Actual implementation details may vary for different versions of Quasar.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 200

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.2. KERNEL TRANSFORMS Chapter 17

Table 17.1: Available parallel reduction algorithms

Algorithm Purpose

default Lets the compiler choose the most suitable parallel reduction algorithm
sharedmemory Performs the parallel reduction in shared memory
warpshuffle Performs the parallel reduction using warp shuffling operations (CUDA 9 or higher)
atomicop Uses a grid-strided loop in combination with an atomic operation

table 17.1 lists available parallel reduction algorithms. atomicop leads possibly to the least efficient algorithm but

is available as alternative (e.g., for platforms on which warp shuffling is not supported).

17.2.2 Local Windowing Transform

The local windowing transform is designed to improve local windowing operations (also known as stencil operations),

such as in convolutions, morphological operations. The transform is again useful for code that has to run on the

GPU. Currently, the transform needs to be enabled with {!kernel_transform enable="localwindow"}.

function [] = __kernel__ joint_box_filter_hor(g : mat'mirror, x : mat'mirror, tmp_g : mat'unchecked,
tmp_x : mat'unchecked, tmp_gx : mat'unchecked, tmp_gg : mat'unchecked, r : int, pos : vec2)

{!kernel_transform enable="localwindow"}

s_g = 0.

s_x = 0.

s_gx = 0.

s_gg = 0.

for i=-r..r

t_g = g[pos + [0,i]]

t_x = x[pos + [0,i]]

s_g = s_g + t_g

s_x = s_x + t_x

s_gx = s_gx + t_g*t_x

s_gg = s_gg + t_g*t_g

endfor

tmp_g[pos] = s_g

tmp_x[pos] = s_x

tmp_gx[pos] = s_gx

tmp_gg[pos] = s_gg

endfunction

This is translated into:

function [] = __kernel__ joint_box_filter_hor(g:mat'const'mirror,x:mat'const'mirror,tmp_g:mat'
unchecked,tmp_x:mat'unchecked,tmp_gx:mat'unchecked,tmp_gg:mat'unchecked,r:int,pos:ivec2,blkpos:
ivec2,blkdim:ivec2)

{!kernel name="joint_box_filter_hor"; target="gpu"}

sh$x=shared((blkdim+[1,((r+r)+1)]))

sh$x[blkpos]=x[(pos+[0,-(r)])]

if (blkpos[1]<(r+r))

sh$x[(blkpos+[0,blkdim[1]])]=x[(pos+[0,-(r)]+[0,blkdim[1]])]

endif

blkof$x=((blkpos-pos)-[0,-(r)])

sh$g=shared((blkdim+[1,((r+r)+1)]))

sh$g[blkpos]=g[(pos+[0,-(r)])]

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 201

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.2. KERNEL TRANSFORMS Chapter 17

if (blkpos[1]<(r+r))

sh$g[(blkpos+[0,blkdim[1]])]=g[(pos+[0,-(r)]+[0,blkdim[1]])]

endif

blkof$g=((blkpos-pos)-[0,-(r)])

syncthreads

s_g=0.

s_x=0.

s_gx=0.

s_gg=0.

for i=-(r)..r

t_g=sh$g[(pos+[0,i]+blkof$g)]

t_x=sh$x[(pos+[0,i]+blkof$x)]

s_g=(s_g+t_g)

s_x=(s_x+t_x)

s_gx=(s_gx+(t_g*t_x))

s_gg=(s_gg+(t_g*t_g))

endfor

tmp_g[pos]=s_g

tmp_x[pos]=s_x

tmp_gx[pos]=s_gx

tmp_gg[pos]=s_gg

endfunction

17.2.3 Kernel Tiling Transform

Kernel tiling is a kernel function code transformation that divides the data in blocks of a fixed size. There are three

possible modes:

• Global kernel tiling: the data is subdivided in blocks of, e.g., ‘32x32x1‘ or ‘32x16x1‘. All threads in the

grid collaborate to first calculate the first block, then the second block, and so on. The loop that traverses all

these blocks is placed inside the kernel function. Note that the blocks normally don’t corresponds to the GPU

(CUDA) blocks. It is very common that a 1D block index traverses 2D or 3D blocks (also called grid-strided

loop). Global kernel tiling has the following benefits:

– Threads are reused; the maximum number of GPU blocks can be reduced, saving thread initialization

and destruction overhead

– Calculations independent of the block can be placed outside of the tiling loop

– Less dependency on the GPU block dimensions, resulting in more portable code

A disadvantages of global kernel tiling is that the resulting kernels are more complex and typically use more

registers.

Global kernel tiling can be activated by placing one of the following code attributes in the kernel function:

{!kernel_tiling dims=[32,16,1]; mode="global"; target="gpu"}

{!kernel_tiling dims=auto; mode="global"; target="gpu"}

The target (e.g., cpu, gpu) specifies for which platform the kernel tiling will be performed. It is possible to

enable tiling for one platform but not for the other. By combining multiple code attributes it is also possible

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 202

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.2. KERNEL TRANSFORMS Chapter 17

to specify different block sizes for different platforms. In case of automatic tiling dimensions, the runtime will

search for suitable block dimensions that optimize the occupancy.

For certain kernels (e.g., involving parallel reduction, shared memory accumulation, ...), global kernel tiling

is performed automatically. Kernels that use grid-level synchronization primitives (without TCC driver mode

cooperative grouping) are also automatically tiled globally. This is also required in order for kernel fusion (see

section 17.1.6) to work correctly.

• Local kernel tiling: here, each thread performs the work of N consecutive work elements. Instead of having

1024 threads process a block of size 32×32, we have 256 threads processing the same block. Each thread then

processes data in a single instruction multiple data (SIMD) fashion. Moreover, the resulting instructions can

be even mapped onto SIMD instructions (e.g., CUDA SIMD/SSE/AVX/ARM Neon, see also section §12), if

the hardware supports them. In the following example, a simple box filter is applied to a matrix with element

type uint8.

function [] = __kernel__ conv(im8 : mat[uint8], im_out : mat[uint8], K : int, pos : ivec(2))

[m,n] = pos

r2 = vec[int](4)

for x=0..K-1

r2 += im8[m,n+x+(0..3)]

endfor

im_out[m,n+(0..3)] = int(r2/(2*K))

endfunction

Local kernel tiling can be activated by placing the following code attribute in the kernel function:

{!kernel_tiling dims=[1,1,4]; mode="local"; target="gpu"}

In case purely SIMD processing is intended, it is better to use the following code attribute (see below):

{!kernel_transform enable="simdprocessing"}

Advantages of local kernel tiling:

– Less threads, so less thread initialization and destruction overhead

– mapping onto SIMD possible (when the block dimensions are chosen according to the GPU platform).

– For some operations, recomputation of values can be avoided

Disadvantages:

– The resulting kernels use more registers, which may negatively impact the performance in some cases

(e.g. register limited kernels)

– Not all operations may be accelerated by hardware SIMD operations (for example, division operations).

– The compiler needs to ensure that the data dimensions are a multiple of the block size. If this is not the

case, extra ”cool down” code is added.

• Hybrid tiling: combines the advantages of global and local kernel tiling. To activate hybrid tiling, code

attributes for both local and global tiling can be placed inside the kernel function:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 203

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.2. KERNEL TRANSFORMS Chapter 17

{!kernel_tiling dims=auto; mode="global"; target="gpu"}

{!kernel_tiling dims=[1,1,4]; mode="local"; target="gpu"}

Hybrid kernel tiling usually occurs as a result of several compiler optimizations.

Example

Consider the following convolution example:

for m=0..size(im,0)-1

for n=0..size(im,1)-1

{! kernel_tiling dims=[1,32]; mode="local"; target="cpu"}

r = 0.0

for x=-K..K

r += im[m,n+x]

endfor

im_out[m,n] = r/(2*K+1)

endfor

endfor

This is translated into:

function [] = __kernel__ opt___kernel$2(K:int,im:mat'const,im_out:mat'unchecked,$datadim:ivec2)

$nMax=$cpu_gridDim().*$cpu_blockDim()

{!parallel for; private=r; private=x}

for $p1=0..$nMax[1]-1

for $p2=0..$nMax[0]-1

pos=[$p1,$p2]

r=zeros(32)

for x=-K..K

r+=im[pos[0],32.*pos[1]+(0..31)+x)]

endfor

im_out[pos[0],32.*pos[1]+(0..31)]=r./((2.*K)+1)

endfor

endfor

endfunction

The operations im[pos[0],32.*pos[1]+(0..31)] are translated to vector operations.

17.2.4 Kernel Boundary Checks

The Kernel Boundary Check transform detects index-out-of-bounds at compile-time, given the available information

(i.e., through the truth-value system).

In certain cases, the transform can detect that the index will always be inside the bounds. In this case, the kernel

argument type can have the modifier ’unchecked (omitting the boundary checks).

For example, the code fragment:

assert(size(A) == size(B))

parallel_do(size(A),A,B,

__kernel__ (y : mat,x : mat,pos : vec2) -> y[pos] += 4.0 * x[pos])

Can be translated into:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 204

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.2. KERNEL TRANSFORMS Chapter 17

Table 17.2: Supported target platform identifiers

Target platform identifier Description

cpu Generic CPU target
gpu Generic GPU target

nvidia_cuda NVidia CUDA target (NVidia GPUs supporting CUDA)
nvidia_opencl NVidia OpenCL target

nvidia All NVidia targets
amd_opencl AMD OpenCL target

amd All AMD targets
generic_opencl All other OpenCL targets

opencl All OpenCL targets

parallel_do(size(A),A,B,

__kernel__ (y : mat'unchecked,x : mat'unchecked,pos : vec2) -> y[pos] += 4.0 * x[pos])

17.2.5 Target-specific programming and manually invoking the runtime scheduler

By default, the Quasar compiler takes a single kernel function as input and specializes the kernel function to

multiple devices (e.g., CPU, GPU). In some circumstances, it may be desirable to manually write implementations

for certain performance-critical functions for several targets. This can be achieved by either 1) writing multiple

kernel functions and by indicating the compilation target within each kernel function (this section) or 2) using the

$target() meta-function (section 17.2.6). The compilation target of a kernel function can be specified using:

{!kernel name="gpu_kernel"; target="gpu"}

Here, gpu_kernel indicates the name of the kernel function (which should correspond to the function definition).

Several target identifiers are listed in table 17.2. Depending on the compilation mode, it may happen that no code

is generated for a given kernel function (for example, a GPU kernel when compiling in CPU mode). To decide

which kernel function implementation is used, the schedule function needs to be used which has mostly the same

arguments as the parallel_do function, with exception of the last parameter which takes a cell vector of the kernel

function implementation. The schedule function returns a zero-based index of the selected kernel function passed

via the cell vector.

Because schedule on its own does not trigger parallel_do, the schedule function is best used within a match

control structure. Within the control structure, also additional launching code could be placed (like calculation of

the optimal launch configuration, e.g., using the max_block_size, opt_block_size and opt_block_cnt functions).

An example is given below for a sum algorithm using the parallel reduction pattern. Actually, for illustrational

purposes: this is the parallel reduction code that is generated for the map-reduce pattern from section §8.4.

Example: a multi-target Reduce and Map algorithm with automatic scheduling

function y = manual_map_sum(x : vec, map : [__device__ (scalar)->scalar])

% GPU implementation

function y = __kernel__ gpu_kernel(x : vec'unchecked, nblocks : int,

map : [__device__ (scalar) -> scalar], blkdim : int, blkpos : int)

{!kernel name="gpu_kernel"; target="gpu"}

bins = shared(blkdim)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 205

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.2. KERNEL TRANSFORMS Chapter 17

% step 1 - parallel sum

val = 0.0

for n=0..nblocks-1

if blkpos + n * blkdim < numel(x)

val += map(x[blkpos + n * blkdim])

endif

endfor

bins[blkpos] = val

% step 2 - reduction

syncthreads

bit = 1

while bit<blkdim

index = 2*bit*blkpos

if index+bit<blkdim

t = bins[index] + bins[index+bit]

bins[index] = t

syncthreads

endif

bit *= 2

endwhile

if blkpos==0

y = bins[0]

endif

endfunction

% Implementation using OpenMP

function y = __kernel__ cpu_kernel(x : vec'unchecked,

map : [__device__ (scalar) -> scalar])

{!kernel name="cpu_kernel"; target="cpu"}

val = 0.0

% The following special directive activates OpenMP to perform

% a parallel reduction. {!parallel for} is indended to

% eliminate #pragma force_parallel in the long term; since

% it provides a means to specify special attributes.

{!parallel for; reduction={val,"+="}}

for n=0..numel(x)-1

val += map(x[n])

endfor

y = val

endfunction

% Manually call the scheduler with two implementations

% In each case, we need to do some additional work

match schedule(numel(x), x, map, {gpu_kernel, cpu_kernel}) with

| 0 ->

N = numel(x)

BLOCK_SIZE = prod(max_block_size(gpu_kernel, N))

nblocks = int((N + BLOCK_SIZE-1) / BLOCK_SIZE)

y = parallel_do([[1,BLOCK_SIZE],[1,BLOCK_SIZE]],x,nblocks,map,gpu_kernel)

| 1 ->

y = serial_do(1,x,map,cpu_kernel)

endmatch

endfunction

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 206

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.3. COMMON COMPILATION SETTINGS Chapter 17

In this example, two kernel functions have been implemented: one for respectively the GPU and the CPU. The

GPU implementation uses the parallel reduction algorithm based on shared GPU memory (see section 9.7), while

the CPU implementation relies on the OpenMP parallel reduction pragma. The scheduling function is then called to

determine the best suitable target for this operation. Subsequently, when the scheduler selects the GPU, additional

launch configuration code is executed and the resulting parameters are passed to the parallel_do function.

Note that the parameter lists of cpu_kernel and gpu_kernel do not need to be equal. For schedule, it suffices to

pass the relevant parameters that affect the scheduling decision.

17.2.6 Compile-time specialization through the $target() meta function

Optionally, kernel functions can use the $target() meta function for the implementation of target-specific code,

for example:

if $target("nvidia_cuda")

% We are compiling for CUDA targets

else

% All other targets

endif

The $target function is evaluated at compile-time during a target-specific optimization step. The function returns

1 in case we are compiling for the specified target and 0 otherwise. For the possible values accepted by the $target

function, see table 17.2.

Such approach is similar to preprocessor tests often used in C or C++ code. To keep the code readibility high, the

technique can best be used when the amount of target-specific code is reasonably small (for example at most a few

lines of code), otherwise it is recommended to write multiple kernel implementations (seesection 17.2.5).

17.3 Common compilation settings

Compilation settings can be configured in the config file Quasar.config.xml. This file is stored in %APPDATA%\..\Local\Quasar

(windows) or ~/.config/Quasar (linux). A number of global settings are listed in table 17.3. Some of the global

settings can also be modified in the program, using the #pragma directive. The following pragmas are available:

#pragma loop_parallelizer (on|off) Turns off/activates the automatic loop parallelizer

#pragma show_reductions (on|off) Enables/disables messages when reductions are applied.

#pragma expression_optimizer (on|off) Enables/disables the expression optimizer.

These settings can also be set directly using the Redshift IDE (see section §18.1).

17.4 CUDA target architecture

The CUDA target architecture (compiler option CUDA_BACKEND_TARGETARCHITECTURE) specifies the name of the

NIVDIA virtual GPU architecture to generate code for. Possible values are Default, sm 13, sm 20, sm 21, sm 30,

sm 35, sm 37, sm 50, sm 52, sm 53, sm 50, sm 60, sm 61, sm 62, sm 70, sm 71, sm 72, sm 75. table 17.4 gives an

overview of common GPU architectures:

A complete list can be found on the NVIDIA website: https://developer.nvidia.com/cuda-gpus.

When the option ’Default’ is selected, the target architecture is automatically determined based on the installed

graphics card. However, in some cases, it is useful to set a target architecture that differs from the default value:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 207

https://developer.nvidia.com/cuda-gpus
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.4. CUDA TARGET ARCHITECTURE Chapter 17

Table 17.3: Global compilation settings

Setting Value Description

NVCC_PATH path Contains the path of the NVCC compiler shell script

(nvcc_script.bat or nvcc_script.sh)

CC_PATH path Contains the path of the native C/C++ compiler shell script

MODULE_DIR directory ’;’ separated list of directories to search for .q files (when using import)

INTERMEDIATE_DIR directory Intermediate directory to be used for compilation.

If none specified, the directory of the input file is used

COMPILER_PERFORM_REDUCTIONS True/False Enables reductions (reduction keyword)

COMPILER_REDUCTION_SAFETYLEVEL off, safe, strict Compiler safety setting for performing reductions

COMPILER_DISPLAY_REDUCTIONS True/False Displays the reductions that have been performed

COMPILER_DISPLAY_WARNINGS True/False Displays warnings during the compilation process

COMPILER_OUTPUT_OPTIMIZED_FILE True/False If true, the optimized .q file is written to disk (for verification)

COMPILER_EXPRESSION_OPTIMIZER True/False Enables automatic extraction and generation of

__kernel__ functions (see section 17.1.2)

COMPILER_SHOW_MISSED_OPT_OPPORTUNITIES True/False Displays additional possibilities for optimization

COMPILER_AUTO_FORLOOP_PARALLELIZATION True/False Enables automatic parallelisation of for-loops (see section 17.1.1)

COMPILER_SIMPLIFY_EXPRESSIONS True/False Simplifies branch expressions whenever possible

COMPILER_PERFORM_BOUNDSCHECKS True/False Performs boundary checking of unchecked variables (CPU engine only)

Useful for debugging mistakes in the use of the ’unchecked modifier.

COMPILER_PERFORM_NAN_INF_CHECKS True/False Generates code that automatically checks for NaN or Inf values

(experimental feature)

COMPILER_PERFORM_NAN_CHECKS True/False Generates code that automatically checks for NaN values

(experimental feature)

COMPILER_LAMBDAEXPRESSION_INLINING Off,OnlySuitable,Always Allows/disallows the inlining of lambda expressions

COMPILER_USEFUNCTIONPOINTERS Always, Controls the generation of kernel/device functions

SmartlyAvoid,Error using function pointers

COMPILER_OPTIMIZATIONLEVEL Basic/Moderate/Full Specifies the optimization level used for compiling Quasar programs

COMPILER_BACKEND_CPU Default/... CPU back-end compiler to be used

COMPILER_BACKEND_CUDA NVidiaC, NVidiaRTC CUDA back-end compiler to be used

COMPILER_BACKEND_OPENCL OpenCLDriver OpenCL back-end compiler to be used

COMPILER_BACKEND_GENERATE_HUMAN True/False Generates human readable code in the back-end stages

_READABLE_CODE (at the cost of longer code)

COMPILER_BACKEND_OUTPUTLINEINFO True/False Generate line number information in the binary files (.ptx).

Useful for debugging and profiling.

CUDA_BACKEND_TARGETARCHITECTURE Default, sm 20, ... NVIDIA Target compile architecture (corresponding to the

NVCC -arch option). See section §17.4.

CUDA_BACKEND_FLUSHTOZERO True/False Flushes denormalized numbers to zero

CUDA_BACKEND_PRECISIONDIVISION True/False Use precision division function

CUDA_BACKEND_PRECISIONSQRT True/False Use precision square root function

CUDA_BACKEND_FASTMATH True/False Use faster mathemetical functions (at the cost of lower numerical accuracy)

CUDA_BACKEND_OPTIMIZATIONMODE O0/O1/O2 Sets the optimization level for compiling CUDA code

CUDA_BACKEND_DYNAMICPARALLELISM True/False Generates code that uses dynamic parallelism

(requires target architecture sm 35 or higher)

CUDA_BACKEND_COOPERATIVEGROUPS True/False Generates code that uses cooperative groups (requires CUDA 9.1 or higher)

CUDA_BACKEND_WARPSHUFFLING True/False Generates code that uses warp shuffling (requires CUDA 9.1 or higher)

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 208

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

17.4. CUDA TARGET ARCHITECTURE Chapter 17

Name Architecture CUDA versions Example cards
Fermi sm 20 3.2-8.0 GeForce 400, 500, 600
Kepler sm 30 5.0+ GeForce 700

sm 35 5.0+ Tesla K40
sm 37 5.0+ Telsa K80

Maxwell sm 50 6.0+ Quadro M6000
sm 52 6.0+ Geforce 900, Titan X
sm 53 6.0+ Jetson TX1

Pascal sm 60 8.0+ Tesla P100
sm 61 8.0+ Geforce 1000, Titan Xp
sm 62 8.0+ Jetson TX2

Volta sm 70 9.0+ Tesla V100, TITAN V
Turing sm 75 10.0+ Geforce RTX 2080 Ti

Table 17.4: Overview of CUDA target architectures

• When generating CUDA code on a computer without NVIDIA GPU (for example, when building a library or

binary to be deployed later on a system with NVIDIA GPU).

• When targetting older GPU cards.

GPU architectures are (generally) backward compatible. When compiling for sm 30, one can use the Geforce GTX

770, Titan X and even Titan Xp, but it is not possible to use older cards as the GeForce GTX 480. However, take

into account that the sm 30 may not take advantage of features in newer generations of GPUs. Therefore, only

when backward compatibility is an issue, it is useful to select a lower architecture than what your GPU supports.

On the other hand, some (very) old versions are not supported by the latest CUDA compiler. Therefore, it is

recommended to use the option ’Default’, unless there is a specific reason to generate code for a lower GPU

architecture.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 209

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

Chapter 18

Chapter

18

Development tools

Quasar comes with two main development tools: Redshift (the main IDE) and Spectroscope (a commandline

debugger tool).

18.1 Redshift - integrated development environment

Redshift is the main IDE for Quasar. It is built on top of GTK and runs on Windows, Linux and MAC. Redshift

has the following main features:

• Multiple document editing with syntax highlighting and completion lists.

• Built-in Quasar Spectroscope (see section §18.2) for debugging and interactive programming

• Call stack, variable definition, variable watch, breakpoints windows, ...

• Incremental compilation, keeping binary modules (e.g., PTX) in memory: significantly decreases overall com-

pilation time

• Source code parsing, function browsing, comment parsing

• Ability to break and continue running programs.

• Integrated documentation system and help system

• Integrated OpenGL functionality for fast visualization

• 2D and 3D image viewer

• Advanced profiler tool with timeline view and special profiler code editor margin.

• Interactive interpretation of Quasar commands

• Data/image debug tooltips

• Background compilation with source code error annotations

© 2023 Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 210

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.2. SPECTROSCOPE - COMMAND LINE DEBUGGER Chapter 18

Figure 18.1: Screenshot of the Redshift IDE for Quasar.

• Optimization pipeline visualization

In the IDE, it is also possible to select the GPU devices on which the program needs to be executed in the main

toolbar. Additionally, the precision mode (e.g., 32-bit floating point or 64-bit floating point) can be selected.

The flame icon toggles concurrent kernel execution, a technique in which CUDA/OpenCL kernels are launched

asynchronously; in many circumstances speeding up the execution.

18.2 Spectroscope - command line debugger

Spectroscope is a command line debugger for Quasar. Its functionality is actually integrated in Redshift (sec-

tion §18.1), although in some circumstances it is still useful to use the debugging tools from a terminal in circum-

stances where a graphical environment is not available (e.g., over SSH on a remote server). Spectroscope provides

an interactive environment where Quasar statements can be entered on interpreted on the fly. In addition, different

commands are available:

• compile [program.q]: compiles a specified program while checking for compilation errors

• load [program.q]: compiles the specified program and loads the definitions (global variables and functions)

• run: runs the loaded program

• list: lists all variables within the current scope/context

• trace: prints the current stack trace

• step: performs a debugger step into a function

• stepover: let’s the debugger step over the current statement

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 211

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

Figure 18.2: Screenshot of Quasar Spectroscope.

• stepout: let’s the debugger step out of the current function

• mod: lists all loaded Quasar modules

• clear: clears all variables, unloads all loaded modules

• path: prints the current module search directory

• stop: terminates the current debugging session

• reset: debugger hard reset - resets the debugging session and all devices

• buildexe [program.q]: builds a portable executable file (.exe)

• buildqlib [program.q]: builds a portable library (.qlib)

• cls: clears the screen

18.3 Redshift Profiler

To analyze the performance of Quasar programs, a profiler has been integrated in Redshift. The profiler uses

the NVIDIA CUDA Profiling tools interface (CUPTI) to obtain accurate time measurements. Using the Redshift

Profiler, it is not necessary to use the tools nvprof, NVIDIA Visual Profiler and NVIDIA nSight separately. The

Redshift Profiler offers the following features:

• Accurate kernel timing measurements with less profiling overhead

• Integrated source correlation, to see instruction counts per code line

• Detailed timeline view, linking kernel launches to the corresponding CPU activity

• GPU events are linked with the corresponding CPU events (e.g. parallel do or function call on the CPU).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 212

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

• Several detailed metrics are available for analyzing the performance of an individual kernel. Metrics include

FLOPs/sec, integer operations/sec, branch efficiency, achieved occupancy, average number of instructions per

second and many more.

• Detailed GPU event view, to see individual operations performed on the GPU

• Support for Multi-GPU profiling (e.g., peer to peer memory transfers)

• Memory profiling: sub-tree view of memory allocations at any point in time

To take advantage of CUPTI, it is necessary to enable “Use NVIDIA CUDA profiling tools” in the program settings

(done by default). Without this option set, the Quasar Profiler reverts to CUDA events (which is less accurate and

degrades the performance during profiling).

In Windows, cupti . dll is bundled with the Quasar installation. In Linux, it may be necessary to adjust the

LD LIBRARY PATH to include libcupti .so, depending on the installed version of CUDA. This can be done by

modifying the .bashrc file (for example, for cuda 10.2):

export LD_LIBRARY_PATH=/usr/local/cuda-10.2/extras/CUPTI/lib64/:$LD_LIBRARY_PATH

The profiling menu in Redshift has been updated with the new features, as can be seen in the following screenshot:

The following features are available:

• Start profiling : executes the program with the profiler attached. This will collect information about the CPU

and GPU kernels, memory allocations, memory transfers. . .

• Collect line information for all kernels: executes all kernel functions in the current module with an execution

tracer attached. This slows down the execution of the kernel functions. The results are displayed in the source

code editor (see further).

• Collect line information for a specific kernel : this is useful when you are optimizing one particular kernel

• Generate detailed report for kernel : executes the program, collecting an extensive sets of metrics for the

selected kernel function and generates a report (see below)

• Compare device performance: useful to compare the execution performance of two devices (e.g. CUDA

vs. OpenCL)

• Compare device accuracy : checks the accuracy/correctness of the program by gathering statistics (e.g. mini-

mum value, maximum value, average value of a matrix) during the execution of the program.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 213

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

Figure 18.3: NVIDIA control panel: allow access to the GPU performance counters to all users

• Cloud tuning : this feature is used to optimize the runtime scheduler and load balancer based on runtime mea-

surements of kernels. The results (kernel execution times on CPU and GPU) are sent to the Gepura/Quasar

server.

As a result of CUPTI, the profiler may now list kernel functions that are not visible to Quasar but that are launched

by library calls (e.g., CuDNN, CuBLAS, CuFFT, . . .). An example is given below:

18.3.1 Security settings

In CUDA 10.1 or newer, using cuPTI profiling requires an additional setting to be made. In Windows, open the

NVIDIA control panel. Click on the desktop menu and enable the developer settings. Then, select “Manage GPU

Performance Counters” and click on “Allow access to the GPU performance counters to all users” (see figure 18.3).

In Linux desktop systems, create a file /etc/modprobe.d with the following content:

opt ions nv id ia ”NVreg Restr ictProf i l ingToAdminUsers =0”

where on some Ubuntu systems, nvidia may need to be replaced by nvidia-xxx where xxx is the version of the

display driver (use lsmod | grep nvidia to find the number). In addition, it may be necessary to rebuild the ram

FS:
update−i n i t r a m f s −u

We recommend creating a backup of the initrd image first (see /boot directory).

For NVIDIA Jetson development boards, the modprobe approach is not available. The only way to get the cuPTI

profiling to work is by executing Quasar or Redshift with admin rights, for example, using sudo.

For more information, see https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters#

SolnAdminTag.

18.3.2 Peer to peer transfers

In multi-GPU configurations, the profiler now displays memory statistics for peer to peer memory copies (i.e., trans-

fers between two GPUs). See the multi-GPU programming documentation for an explanation of the performance

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 214

https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters#SolnAdminTag
https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters#SolnAdminTag
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

implications related to these peer to peer transfers.

When the profiler indicates memory transfer performance bottlenecks, it is possible to investigate every bottleneck

individually, via the memory transfer summary.

Per line of code, the memory transfers are listed, including the following information:

• Count : the number of transfers that were measured

• Type: the type of transfer: CPU to GPU, GPU to CPU, GPU to GPU or peer to peer

• Total Bytes: the total number of bytes for all memory transfers of this type

• Transfer Bytes: the number of bytes transferred per transaction (Total bytes = Count * Transfer Bytes)

• Total Duration: the total amount of time taken by the memory transfers of this type

• Average throughput : the measured transfer speed.

• From device: the device from which the transfer originates

• To device: the device to which the transfer is done

In systems in which multiple GPUs are not connected to the same PCIe slot, the peer to peer copy between GPUs

generally passes the CPU memory. Correspondingly, these peer-to-peer copies cause two transfers: 1) from the

source GPU to the CPU host and 2) from the CPU host to the target GPU. In the memory transfer view, the peer

to peer copies are listed as one operation, for clarity. In the timeline view however, such peer to peer copies are

displayed as dual operations (in green in the screenshot below):

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 215

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

In the screenshot, it can be seen that the peer to peer copy blocks all operations on both GPUs, which is degrades

the runtime performance.

18.3.3 GPU event view

The GPU event view shows each operation performed on the GPU(s). This is useful to analyze whether e.g.,

memory copies and recomputation can be avoided.

The following types of operations are listed:

• mem alloc: a memory allocation operation

• mem free: a memory deallocation operation

• mem transfer: memory transfer operation

• kernel lnch sync: a synchronous kernel launch operation

• kernel lnch async: an synchronous kernel launch operation

• device func call sync : a synchronous device function call

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 216

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

• device func call async : an asynchronous device function call

• sync event: a synchronization event

• sync event(global sched) (Hyperion engine only): indicates when the global scheduling algorithm was run (see

multi-GPU programming guide for more information)

Notes:

• In multi-GPU configurations, memory allocations of a single object may be listed multiple times, because an

object may use memory of multiple GPUs.

• Both synchronous and asynchronous kernel launches may be listed out of order with respect to other events.

This is because the kernel start and duration times on the GPU are listed. Due to the nature of CUDA

streams, the runtime may assume that an operation is finished at the moment a kernel function is launched,

therefore a memory deallocation may occur even before the memory is used in a kernel function.

18.3.4 Timeline view

The timeline view now accurately depicts the kernel execution times and duration. In the following screenshot, it

can be seen that both GPUs are (almost) fully utilized:

The mouse tooltips now also show a table containing the memory access information of the kernel function.

• Oid : a unique object identifier (for a vector, matrix, user-defined object etc.)

• Mode: the object access mode (ReadOnly indicates that the kernel function only reads the data, WriteOnly

indicates that the kernel function only writes to the data, ReadWrite indicates both reading and writing).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 217

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

• Memory size: the amount of memory taken by this object.

This can be used to track down memory transfers, check the access mode (ReadOnly, WriteOnly) etc. By double-

clicking on the object references, the operations to an individual object can be visualized in the GPU events view.

For sync event(global) (which triggers a run of the global scheduling algorithm), the object reference that triggered

the scheduling operation can be inspected:

Note that a global scheduling operation can occur:

• when the global command queue reaches its maximal capacity

• when the CPU requires the result of an operation (for example, a kernel function returning a scalar value).

18.3.5 Kernel line information

When profiling a kernel with “collecting line information” enabled, execution information is displayed in the code

editor:

Shown is the total execution time of running each line of the specified kernel on the GPU, as well as:

• Average time per instruction: the total duration divided by the number of instructions (ignoring the paral-

lelism)

• Number of threads: the total number of threads that executed this instruction

• Number of non-branch predicated threads: the total number of active threads (i.e., threads that are not disabled

due to a false branch condition)

• Branch predication: the percentage of threads that were disabled due to a false branch condition.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 218

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

The kernel line information now allows to accurately identify bottlenecks within kernel functions, based on PTX to

Quasar source code correlation. Note that due to compiler optimizations, the mapping from PTX to Quasar is not

one-to-one. Therefore, the line information may not always correspond to the exact operation that was executed.

To improve the correlation, the CUDA optimizations in the Program Settings dialog box can be disabled.

18.3.6 Kernel metric reports

Occupancy report

The occupancy report lists several parameters of the kernel function (block dimensions, data dimensions, amount

of shared memory) and displays the calculated occupancy. Occupancy is a metric for the degree of “utilization” of

the multiprocessors of the GPU.

Notes:

• The calculated occupancy is not necessarily the real occupancy. By clicking the “single launch configuration”

or “multiple launch configuration” buttons, the achieved occupancy can be calculated based on hardware

metrics.

• Occupancy is an indicator of performance, but a low occupancy does not necessarily results in a poor per-

formance. It may happen for example that the function units of the GPUs are underutilized (e.g., due to a

memory bandwidth bottleneck)

whereas the occupancy is maximal.

The report displays the kernel execution time and subsequent analysis per launch configuration. A launch configu-

ration is a set of parameter values, such as the grid dimensions, the block dimensions, the amount of shared memory

being used). Because the performance of the kernel depends on the launch configuration, it is necessary to separate

the measured profiling information according to the launch configuration.

In the bottom, the (theoretical) occupancy as function of respectively the number of threads/block, the number

registers and the amount of shared memory is displayed. This indicates how occupancy can be improved:

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 219

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

• The lower the amount of shared memory used by the kernel, the higher the occupancy will be. Of course,

shared memory is required to mitigate the lower device memory bandwidth, therefore in practice a trade-off

is always necessary.

• Because the set of registers are shared between the different blocks, a lower number of registers may allow

more blocks to run concurrently. Therefore, a lower number of registers generally leads to a higher occupancy.

However, the occupancy value is mostly indicates whether the launch configuration is selected to be “efficient” for

the particular GPU. Unless the block dimensions are manually specified (e.g. via parallel do , {!cuda launch bounds

max threads per block=X}, or {! parallel for blkdim=X}), the runtime system uses in internal optimization algorithm

to select the launch configuration that maximizes the occupancy.

In practice, an occupancy value of 50% (or even in many cases 25%) is sufficient to obtain maximal performance for

the selected launch configuration. To gain more insights about the performance of a particular kernel, additional

analysis is required.

Max. theoretical threads: calculated as the number of assigned warps × warp size × max active blocks, is the

number of threads that is active on the GPU, after the warm-up phase of the kernel. If the occupancy value is

smaller than 100%, check if the product of the data dimensions is smaller than max. theoretical threads. If this is

the case, GPU multiprocessors are idle because the data dimensions of the kernel are too small.

Overview compute vs. memory and function unit utilization

The compute vs. memory metrics are obtained by reading the hardware counters of the GPU. The following metrics

are given:

• Kernel duration: Indicates the duration of one single run of the kernel function in the selected launch config-

uration

• Achieved occupancy : Shows the achieved occupancy of the kernel. The achieved occupancy is calculated based

on the number of warps (and correspondingly threads) that have effectively been executed on the GPU. In the

best case, the achieved occupancy is very close to the theoretical occupancy. When the achieved occupancy

is significantly lower than the theoretical occupancy, the instruction scheduling issues may have occurred.

• Warp execution efficiency : number of eligable warps per cycle compared to the total number of warps. An

eligable warp is a warp that can be executed in the next cycle.

• SM efficiency : The SM efficiency metric provides information about the effectiveness in issuing instructions.

• Branch efficiency : The ratio of uniform control flow decisions over all executed branch instructions. When

the branch efficiency is maximal, all threads within each warp take the same control path. A low branch

efficiency indicates a poor performance due to branch divergence.

• Average number of instructions/warp: Indicates the average number of instructions that were executed per

warp.

• Achieved FLOPs single/double precision: Gives the number of floating point operations per second (either

single or double precision) that this kernel function achieves. It is useful to compare the achieved FLOPs

with the maximally achievable FLOPs for the specific GPU (typically 5 TFlops or higher), although memory

dependencies typically lead to significantly lower FLOPs.

• Arithmetic intensity : a large value indicates that the kernel is compute-bound, while a small values signifies

that the kernel is memory-bound (or stalls occur).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 220

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

In addition, the utilization of the individual function units on a scale from 0 to 10 is displayed (the higher, the

better).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 221

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

Instruction execution count

The instruction execution count report shows the total number of instructions per type that were executed. Due

to the presence of different function and computation units, maximal utilization can be achieved by balancing the

operations. For example, when the number of floating point operations is much higher than the number of integer

operations, it is useful to investigate whether some parts of the calculations can be done in integer precision.

Note: miscellaneous instructions are warp voting and shuffling operations.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 222

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

Floating point operations

The floating point operations can further be categorized into:

• Add operations

• Multiply operations

• FMA (fused multiply and add): the CUDA compiler combines add and multiply operations to improve the

performance

• Special: special mathematical functions (sin, cos etc.)

• Others: other floating point operations (e.g. conversion between integer and floating point).

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 223

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

Stall reasons

Issue stall reasons indicate why an active warp is not eligable.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 224

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

The following possibilities occur:

• Instruction Fetch: The next instruction has not yet been fetched.

• Execution Dependency : An input is not yet available. By increasing the instruction-level parallelism, execution

dependency stalls can be avoided.

• Memory Dependency : too many load/store requires are pending. Memory dependencies can be reduced

by optimizing memory requests (e.g., memory coalescing, caching in shared memory, improving memory

alignment and access patterns).

• Texture: too many texture fetches are pending

• * syncthreads*: too many threads are blocked by thread synchronization

• Constant : A constant load leads to a constant cache miss.

• Compute pipeline busy : Insufficient computation resources are available during the execution of the kernel.

• Memory Throttle: Too many individual memory operations are pending. This can be improved by grouping

memory operations together (for example, via the vector data types such as vec(4)).

Memory throughput analysis

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 225

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

18.3. REDSHIFT PROFILER Chapter 18

The memory throughput analysis indicates the load/store and total throughputs (in bytes/second) achieved for

the different memory units (shared memory, unified L1 cache, device memory and system memory), as well as the

number of L2 cache operations and the hit rates of the L1 cache.

Also shown are the average number of transactions per memory request. When the number of transactions per

request is high, it may be beneficial to group the transactions (e.g., using vector data types such as vec(4)).

The best kernel performance is generally achieved by a good balance between operations using the different memory

units. For many kernel functions, this practically means:

• Use of shared memory whenever applicable: see the documentation on shared memory designators in Quasar

• Use of texture memory, especially for readonly memory with a random access pattern.

© 2023 Ghent University / imec / Gepura. Technology patented by WO patent 2015150342. 226

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

	Contents
	1 Introduction
	1.1 Computation Engines
	1.2 How to use?
	1.3 Quasar Programming Language
	1.4 Integration with foreign programming languages

	2 Getting started
	2.1 Quasar high-level programming concepts
	2.2 A brief introduction of the type system
	2.2.1 Floating point representation
	2.2.2 Mixed precision floating point computations
	2.2.3 Integer types
	2.2.4 Fixed sized datatypes
	2.2.5 Higher dimensional matrices
	2.2.6 User-defined types, type definitions and pointers

	2.3 Automatic parallelization
	2.4 Writing parallel code using kernel functions
	2.4.1 Basic usage: kernel functions
	2.4.2 Device functions
	2.4.3 Memory usage inside kernel or device functions
	2.4.4 Advanced usage: shared memory and synchronization

	3 Type system
	3.1 Type definitions
	3.2 Variable construction
	3.3 Size constraints
	3.4 Dimension constraints
	3.5 Cell array types
	3.6 Type constructors and the typename function
	3.7 Type classes
	3.8 Class / user defined type (UDT) definitions
	3.9 Function types
	3.10 Enumerations
	3.11 Passed by reference / Passed by value
	3.12 Constants

	4 Programming concepts
	4.1 Polymorphic variables
	4.2 Closures
	4.3 Device functions, kernel functions, host functions
	4.4 Nested parallelism
	4.5 Function overloading
	4.5.1 Device function overloading
	4.5.2 Optional function parameters

	4.6 Functions versus lambda expressions
	4.6.1 Explicitly typed lambda expressions

	4.7 Kernel function output arguments
	4.8 Variadic functions
	4.8.1 Variadic device functions
	4.8.2 Variadic function types
	4.8.3 The spread operator
	4.8.4 Variadic output parameters

	4.9 Reductions
	4.9.1 Symbolic variables and reductions
	4.9.2 Reduction resolution
	4.9.3 Ensuring safe reductions
	4.9.4 Reduction where clauses
	4.9.5 Variadic reductions

	4.10 Partial evaluation
	4.11 Code attributes
	4.12 Macros
	4.13 Exception handling
	4.14 Documentation conventions

	5 The logic system
	5.1 Kernel function assertions
	5.2 Built-in compiler functions
	5.3 Assertion types recognized by the compiler
	5.3.1 Equalities
	5.3.2 Inequalities
	5.3.3 Type assertions

	5.4 User-defined properties
	5.5 Unassert
	5.6 The role of assertions

	6 Generic programming
	6.1 Parametrized functions
	6.2 Parametrized reductions
	6.3 Parametrized types
	6.4 Generic memory allocation functions and casting
	6.5 Explicit specialization through meta-functions
	6.6 Implicit specialization
	6.7 Generic size-parametrized arrays
	6.8 Generic dimension-parametrized arrays
	6.9 Example of generic programming: linear filtering

	7 Object-oriented programming
	7.1 Mutable/non-mutable classes
	7.2 Constructors
	7.3 Destructors
	7.3.1 Methods
	7.3.2 Properties
	7.3.3 Operators

	7.4 Dynamic classes
	7.5 Parametric types
	7.6 Inheritance
	7.7 Virtual functions, interfaces, abstract classes

	8 Special programming patterns
	8.1 Matrix/vector expressions
	8.2 Loop parallelization/serialization
	8.2.1 While-loop serialization
	8.2.2 Example: gamma correction

	8.3 Dynamic kernel memory
	8.3.1 Examples
	8.3.2 Memory models
	8.3.3 Features
	8.3.4 Performance considerations

	8.4 Map and Reduce pattern
	8.5 Cumulative maps (prefix sum)
	8.6 Meta functions

	9 GPU hardware features
	9.1 Constant memory and texture memory
	9.2 Shared memory designators
	9.2.1 How to use
	9.2.2 Virtual blocks and overriding the dependency analysis
	9.2.3 Examples
	9.2.3.1 Histogram
	9.2.3.2 Separable linear filtering
	9.2.3.3 Parallel reduction (sum of NxN matrices)

	9.3 Speeding up spatial data access using Hardware Texturing Units
	9.4 16-bit (half-precision) floating point textures
	9.5 Multi-component Hardware Textures
	9.6 Texture/surface writes
	9.7 Maximizing occupancy through shared memory assertions
	9.8 Cooperative groups and warp shuffling functions
	9.8.1 Fine synchronization granularity
	9.8.2 Optimizing block count for grid synchronization
	9.8.3 Memory fences

	9.9 Kernel launch bounds
	9.10 Memory management
	9.11 Querying GPU hardware features

	10 Parallel programming examples
	10.1 Gamma correction
	10.2 Fractals
	10.3 Image rotation, translation and scaling [basic]
	10.4 2D Haar inplace wavelet transform using lifting
	10.5 Convolution
	10.6 Parallel reduction sum
	10.7 A more accurate parallel sum
	10.8 Parallel sort
	10.9 Matrix multiplication

	11 Multi-GPU programming
	11.1 A quick glance
	11.2 Setting up the device configuration
	11.3 Three levels of concurrency
	11.4 Manual vs. automatic multi-GPU scheduling
	11.5 Host Synchronization
	11.6 Key principles for efficient multi-GPU processing
	11.7 Supported Libraries
	11.8 Profiling techniques
	11.9 Automatic GPU scheduling
	11.10 Developing multi-GPU applications

	12 SIMD processing on CPU and GPU
	12.1 Storage versus computation types
	12.2 x86/x64 SIMD accelerated operations
	12.2.1 Example: AVX image filtering on CPU

	12.3 CUDA SIMD accelerated operations
	12.3.1 Example: 8-bit image filtering
	12.3.2 Example: 16-bit half float image filtering

	12.4 ARM Neon accelerated operations
	12.5 Automatic alignment
	12.6 Automatic SIMD code generation

	13 Best practices
	13.1 Use “main” functions
	13.2 Shared memory usage
	13.3 Loop parallelization
	13.4 Output arguments
	13.5 Writing numerically stable programs
	13.6 Writing deterministic kernels

	14 Built-in function quick reference
	15 Functional image processing in Quasar
	15.1 Example: tranlation and filtering

	16 The Quasar runtime system
	16.1 Program interpretation and execution
	16.2 Abstraction layer for computation devices
	16.3 Object management
	16.4 Memory management
	16.5 Load balancing and runtime scheduling
	16.6 Optimizing memory transfers with const and nocopy
	16.7 Controlling the runtime system programmatically

	17 The Quasar compiler/optimizer
	17.1 Function Transforms
	17.1.1 Automatic For-Loop Parallelizer (ALP)
	17.1.2 Automatic Kernel Generator
	17.1.3 Automatic Function Instantiation
	17.1.4 High Level Inference
	17.1.5 Function inlining
	17.1.6 Kernel fusion

	17.2 Kernel transforms
	17.2.1 Parallel Reduction Transform
	17.2.2 Local Windowing Transform
	17.2.3 Kernel Tiling Transform
	17.2.4 Kernel Boundary Checks
	17.2.5 Target-specific programming and manually invoking the runtime scheduler
	17.2.6 Compile-time specialization through the $target() meta function

	17.3 Common compilation settings
	17.4 CUDA target architecture

	18 Development tools
	18.1 Redshift - integrated development environment
	18.2 Spectroscope - command line debugger
	18.3 Redshift Profiler
	18.3.1 Security settings
	18.3.2 Peer to peer transfers
	18.3.3 GPU event view
	18.3.4 Timeline view
	18.3.5 Kernel line information
	18.3.6 Kernel metric reports

