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1 PREFACE

Preface

This document contains information on the CUDA features that are currently supported in Quasar, how they can be accessed
and used from within Quasar.

The goal is to make a wide set of CUDA features available to a user group that has no (or limited) experience with program-
ming in CUDA, or to teams that do not have the available time resources available to do low-level CUDA programming.

The CUDA back-ends in Quasar closely follow the features new CUDA releases so that 1) the speci�c performance improving
CUDA features are accessible from Quasar and so that 2) the end-users can bene�t from buying new NVidia GPUs. The �nal
goal is that when switching to newer GPUs, they see an acceleration of their algorithms, without having to do any e�orts
or changing their programs.

Roughly speaking, we can distinguish the CUDA features in two classes:

1. CUDA features that are used automatically by Quasar. Examples are: shared memory, CUFFT, dynamic parallelism,
OpenGL interoperability, CUDA streams and synchronization, stream callbacks. . .

2. CUDA features in which the user has to make small modi�cations to the program in order to see the e�ects. Examples
are: the use of hardware texturing units, the use of 16-bit �oating point formats, the use of the non-coherent constant
cache. . .

Some features impact the code generation, while other features impact the run-time. Because host/kernel and device func-
tions are all described from within Quasar, the Quasar compiler has a good view on the intentions of the programmer and
can take appropriate action (e.g., applying various code transformations, or adding meta information that may help the
run-time).

This document also discusses several techniques that are currently available in the Quasar compiler/run-time.
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2 CUDA FEATURES

CUDA features

Running kernels on the GPU

A simple example of a kernel that can be executed on the GPU is given below:

im = imread("image.png")
im_out = zeros(size(im))

function [] = __kernel__ filter_kernel(x, y : ’unchecked, mask, dir, pos)
offset = int(numel(mask)/2)
total = 0.
for k=0..numel(a)-1

total += x[pos + (k - offset).* dir] * mask[k]
endfor
y[pos] = total

endfunction

parallel_do(size(im),im,im_out,[1, 2, 3, 2, 1] / 9,[0,1],filter_kernel)

First, the kernel function �lter_kernel is de�ned. Then, an image is read from the hard disk (imread). Next, the output image
is allocated an initialized with zeros (zeros). Finally, the parallel_do function runs the kernel �lter_kernel , which �lters the
image using the speci�ed �lter mask [1,2,3,2,1]/9 .

Kernel functions need to be declared using the __kernel__ modi�er. Although, technically, this modi�er could even be omitted
from the Quasar language speci�cation, it brings transparency to the user about which functions eventually will be executed
on the GPU device.

When running kernel functions, the run-time system automatically adapts the block dimensions, shared memory size, to
the GPU parameters obtained using the CUDA run-time API. The run-time also makes sure that the data dimensions are
a multiple of the block dimensions, thereby maximizing the occupancy of the resulting kernel. If necessary, the run-time
system will run a version of the kernel that can process data dimensions that are not a multiple of the block dimensions.

Depending on the characteristics of the kernel (determined at compile-time), the run-time system also chooses the cache
con�guration of the kernel: to trade-o� shared memory vs. data caching.

To de�ne kernels in Quasar, lambda expressions can also be used, if that is more convenient. In combination with (automatic)
closure variables, we can de�ne the above �lter simply as:

parallel_do(size(im),__kernel__ (pos) -> y[pos] =
(x[pos+[0,-2]]+x[pos[0,2]]+2*(x[pos+[0,-1]]+x[pos+[0,1]]+3*x[pos])/9)

Note that in this example, the �lter mask [1,2,3,2,1]/9 is substituted in the kernel function, which is a manual optimization.
However, the compiler is able to do this optimization automatically. Even in the �rst example, the variables dir and mask
are determined to be constants by the compiler, and a specialization of the kernel �lter_kernel is generated automatically
that utilizes this constantness.

Alternatively, in many cases, kernel functions may be generated automatically by the Quasar compiler. For example, for
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2.2 Device functions 2 CUDA FEATURES

matrix expressions A+B.∗C+D [:,:,2] the compiler may generate a kernel function. Idem for the automatic loop parallelizer.
Consider the loop:

x = imread("image.png")
y = zeros(size(x))
for m=0..size(y,0)-1

for n=0..size(y,1)-1
for k=0..size(y,2)-1

y[m,n,k] = (x[m,n-2,k]+x[m,n+2,k] + 2*(x[m,n-1,k]+x[m,n+1,k])+3*x[m,n,k])/9
endfor

endfor
endfor

For the above loop, the compiler will perform a dependency analysis and determine that the loop is parallelizable. Subse-
quently, a kernel function and parallel_do call will automatically be generated. This relieves the user from thinking in terms
of kernel functions and parallel loops.

Device functions

To enable kernel functions to share functionally, __device__ functions can be de�ned. __device__ functions can be called from
either host functions (i.e. without __kernel__/__device__) or other kernel/device functions. An example is given below:

function y = __device__ hsv2rgb (c : vec3)
h = int(c[0] * 6.0)
f = frac(c[0] * 6.0)
v = 255.0 * c[2]
p = v * (1 - c[1])
q = v * (1 - f * c[1])
t = v * (1 - (1 - f) * c[1])
match h with
| 0 -> y = [v, t, p]
| 1 -> y = [q, v, p]
| 2 -> y = [p, v, t]
| 3 -> y = [p, q, v]
| 4 -> y = [t, p, v]
| _ -> y = [v, p, q]
endmatch

endfunction

Note the compact syntax notation in which vectors can be handled.

Device functions can be generic (like template functions in C++). In Quasar, it su�ces to not specify any type of the function
arguments. The following lambda expression

norm = __device__ (x) -> sqrt(sum(x.^2))

will then be specialized for every usage. For example, one can call the function with a scalar number (norm(−2)=2) or using
a vector (norm ([3,4]) =5).
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2.4 Datatypes and working precision 2 CUDA FEATURES

Block position, block dimensions, block index

Several GPU working parameters can be accessed via special kernel function parameters (with a �xed name). For example:

function [] = __kernel__ traverse(pos, blkpos, blkdim, blkidx)
...

endfunction

The meaning of the special kernel function parameters is as follows:

Parameter name Meaning

pos Position
blkpos Position within the current block
blkdim Block dimensions
blkidx Block index
blkcnt Block count (grid dimensions)
warpsize Size of a warp

Correspondingly, the pos argument is calculated (internally) as follows:

pos = blkidx .* blkdim + blkpos

The type of the parameters can either be speci�ed by the user (e.g., ivec2: an integer vector of length 2), or determined
automatically through type inference.

By default, the block dimensions are determined automatically by the Quasar runtime system, but optionally, the user can
specify the block dimensions manually, using the parallel_do function.

The maximum block size for a given kernel function can be requested using the function max_block_size. An optimal block
size can be calculated with the function opt_block_size .

Datatypes and working precision

Quasar supports both integer, scalar (�oating point) and complex scalar data data types. Typically, the global �oating point
working precision is speci�ed at a global level (inside the Quasar Redshift IDE). This allows the user to change the precision
of his program at any point, which allows him/her to investigate the accuracy or performance bene�ts of a di�erent working
precision. Two precision modes are supported (single precision and double precision) in global mode. The impact of the
working precision is global, and leads to di�erent sets of functions to be called internally. For example, cuFFT can be used
in single or in double precision mode; this is done automatically (the user does not need to change the code, as it su�ces to
call the �t1 , �t2 or �t3 functions).

In case mixed �oating point precision are indended, it is also possible to explicitly allocate matrices with a speci�ed precision.
Three precision modes are supported (half, single, double precision):
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A_half = typename(mat[scalar’half])(100,100)
A_single = typename(mat[scalar’single])(100,100)
A_double = typename(mat[scalar’double])(100,100)

Note that Quasar’s runtime by default only support functions in the global precision. Import �oattypes .q to use functions
on non-global precision types (for example half ).

For maximal performance, kernels involving half precision �oating point numbers are best vectorized to use the 32-bit
vec[ scalar ’ half ](2) SIMD type. See below in the SIMD section.

Atomic operations

Atomic operations have a special syntax in Quasar. Whenever a compound assignment operator is used (e.g., +=,−=,. . . ) on
a vector/matrix variable that is stored in the global/shared memory of the GPU, an atomic operation is performed. Atomic
operations are supported for integers and �oating point numbers. The following table lists the types of supported atomic
operations.

Operator Meaning

+= Atomic add
-= Atomic subtract
= Atomic multiply
/= Atomic divide
ˆ= Atomic power
.*= Atomic pointwise multiplication (e.g. for vectors)
./= Atomic pointwise division (e.g. for vectors)
.ˆ= Atomic pointwise power (e.g. for vectors)
&= Atomic bitwise AND
|= Atomic bitwise OR
~= Atomic bitwise XOR
ˆˆ= Atomic maximum
__= Atomic minimum

The result of the atomic operation is the value obtained after the operation. For example, for a=0; b=(a+=1), we will have
that b=1.

The use of atomic operations is very convenient, especially for writing functions that aggregate the data, like:

x = imread("image.tif")
[sum1,sum2] = [0.0,0.0]
for m=0..size(x,0)-1

for n=0..size(x,1)-1
sum1 += x[m,n]
sum2 += x[m,n]^2

endfor
endfor

A direct translation to atomic operations on the GPU does not lead to the most optimal performance (because the operations
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will be serialized internally). Therefore, to be able to bene�t from the simplicity in implementing summing/other aggregation
algorithms, the Quasar compiler automatically recognizes aggregation variables, and translates the resulting loop to a more
e�cient parallel sum reduction algorithm using shared memory. This often improves the performance by a factor of ten!

Atomic exchange, compare and exchange

Some parallel algorithms rely on atomic exchange / compare and exchange operations. These operations can be implemented
using the <− operator.

Atomic exchange:

old_val = (a[0] <- new_val)

Atomic compare and exchange:

old_val = (a[0] <- (expected_val, new_val))

The above atomic operations can be used to implement concurrent data structures, mutexes and semaphores. Note however
that the GPU hardware may execute CUDA warps in a lock-step, causing deadlocks when atomic compare and exchange
operations are used. Also for performance reasons it is recommended to avoid intensive reliance on atomic (compare and)
exchange operations.

It seems that - inspite of being used intensively on the CPU - these operations can often be avoided by using simpler
synchronization mechanisms provided by the GPU (e.g., shared memory, thread synchronization, warp shu�ing, . . . ).

Shared memory and thread synchronization

As mentioned in the previous section, the compiler may generate code that uses the shared memory of the GPU automati-
cally. In fact, the compiler is able to detect certain programming patterns and to replace them by algorithms that make use
of shared memory. Some examples are:

• Stencil operations (e.g., convolution)
• Parallel reduction algorithms
• Parallel pre�x sum algoritms
• Histogram computations (see documentation on shared memory designators)

This alleviates the user from writting algorithms making use of the shared memory. However, in some cases, it is also
useful to manually write algorithms that store intermediate values in the shared memory. Therefore, shared memory can be
allocated using the function shared (or optionally using shared_zeros, in case the memory needs to be initialized with zeros).
Thread synchronization is performed using the keyword syncthreads. An example is given below:

function y = gaussian_filter(x, fc, n)
function [] = __kernel__ kernel(x:cube,y:cube’unchecked,fc:vec’unchecked’hw_const,n:int,pos:ivec3,
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blkpos:ivec3,blkdim:ivec3)
[M,N,P] = blkdim+[numel(fc),0,0]
assert(M*N*P<=1024) % put an upper bound on the amount of shared memory
vals = shared(M,N,P) % allocate shared memory

sum = 0.
for i=0..numel(fc)-1 % step 1 - horizontal filter

sum += x[pos[0]-n,pos[1]+i-n,blkpos[2]] * fc[i]
endfor
vals[blkpos] = sum % store the result

if blkpos[0]<numel(fc) % filter two extra rows (needed for vertical filtering
sum = 0.
for i=0..numel(fc)-1

sum += x[pos[0]+blkdim[0]-n,pos[1]+i-n,blkpos[2]] * fc[i]
endfor
vals[blkpos+[blkdim[0],0,0]] = sum

endif

syncthreads(block) % thread synchronization for the current block

sum = 0.
for i=0..numel(fc)-1 % step 2 - vertical filter

sum += vals[blkpos[0]+i,blkpos[1],blkpos[2]] * fc[i]
endfor
y[pos] = sum

endfunction
y = uninit(size(x))
parallel_do (size(y), x, y, fc, n, kernel)

endfunction

Here, it is worth mentioning that the assertion M∗N∗P<=1024 helps the compiler, to determine an upper bound for the amount
of shared memory that needs to be reserved for the kernel function. This allows for multiple blocks to be processed in parallel
on the GPU (maximizing the occupancy).

As an alternative, shared memory designators have been added to Quasar. A variable can explicitly be annotated to be stored
in shared memory, using the ’shared accessor. The Quasar compiler then generates the necessary code to transfer the data
to shared memory and to distribute the copy task/calculations over the di�erent threads. This signi�cantly simpli�es the
code and improves the readability.

function [] = __kernel__ kernel(A : mat, a : scalar, b : scalar, pos : ivec3)

B : ’shared = transpose(a*A[0..9, 0..9]+b) % fetch
% ... calculations using B (e.g., directly with the indices)
A[0..9, 0..9] = transpose(B) % store

endfunction

Thread synchronization

The keyword syncthreads accepts a parameter that indicates which threads are being synchronized. This allows more �ne
grain control on the synchronization.
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Keyword Description

syncthreads(warp) performs synchronization across the current (possibly diverged) warp (32 threads)
syncthreads(block) performs synchronization across the current block
syncthreads( grid ) performs synchronization across the entire grid
syncthreads( multi_grid ) performs synchronization across the entire multi-grid (multi-GPU)
syncthreads(host ) synchronizes all host (CPU and GPU threads)
syncthreads alias for syncthreads(block)

The �rst statement syncthreads(warp) allows divergent threads to synchronize at any time (it is also useful in the context
of Volta’s independent scheduling). syncthreads(block) is equivalent to syncthreads in previous versions of Quasar. The grid
synchronization primitive syncthreads( grid ) allows to place barriers inside kernel function that synchronize all blocks. The
following example shows how to apply a separable �lter to an input image.

function y = gaussian_filter_separable(x, fc, n)
function [] = __kernel__ gaussian_filter_separable(x : cube, y : cube, z : cube, fc : vec, n : int

, pos : vec3)
sum = 0.
for i=0..numel(fc)-1

sum = sum + x[pos + [0,i-n,0]] * fc[i]
endfor
z[pos] = sum
syncthreads(grid)
sum = 0.
for i=0..numel(fc)-1

sum = sum + z[pos + [i-n,0,0]] * fc[i]
endfor
y[pos] = sum

endfunction
z = uninit(size(x))
y = uninit(size(x))
parallel_do (size(y), x, y, z, fc, n, gaussian_filter_separable)

endfunction

The advantage is not only in the improved readability of the code, but the number of kernel function calls can be reduced
which further increases the performance. This feature also opens up the way to kernel fusion (see further), which intensively
uses grid-level synchronization.

There are a few caveats with grid-level synchronization:

• The number of active blocks should be less or equal than the total number of blocks that the GPU can process in
parallel. This is to ensure that all active blocks can reach the grid barrier at the same time.

• The values of locally declared variables (such as sum in the above example) are not preserved across grid barriers and
need to be reinitialized.

The Quasar compiler enforces these conditions automatically. However, in case manual control of the block size and/or
block count is desirable, the function opt_block_cnt needs to be used. This can be done as follows:

block_size = opt_block_size(kernel,data_dims)
grid_size = opt_block_cnt(kernel,block_size,data_dims)
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parallel_do([grid_size.*block_size, block_size], kernel)

First, the optimal thread block size is calculated (which typically maximizes occupancy for a given kernel and data dimen-
sions). Next, the grid size is optimized to ensure the grid-level synchronizations are satis�ed.

Memory synchronization

The keyword memfence can be used to place memory barriers in the code; this is useful when threads need to wait for a
global memory operation to be completed.

Keyword Description

memfence(grid) Suspends the current thread until its global memory writes are visible by all threads in the grid
memfence(block) Suspends the current thread until its global memory writes are visible by all threads in the block
memfence(system) Suspends the current thread until its global memory writes are visible by all threads in the system (i.e., CPU, GPU, . . . )

Cooperative groups

Kernels can have special arguments that give �ne grain control over GPU threads

Parameter Type Description

coalesced_threads thread_block a thread block of coalesced threads
this_thread_block thread_block describes the current thread block
this_grid thread_block describes the current grid
this_multi_grid thread_block describes the current multi-GPU grid

The thread_block class has the following properties:

Property Description

thread_idx Gives the index of the current thread within a thread block
size Indicates the size (number of threads) of the thread block
active_mask Gives the mask of the threads that are currently active

The thread_block class has the following methods:

Method Description

sync() Synchronizes all threads within the thread block
partition ( size : int ) Allows partitioning a thread block into smaller blocks
sh� (var , src_thread_idx : int ) Direct copy from another thread
sh�_up (var , delta : int ) Direct copy from another thread, with index speci�ed relatively
sh�_down(var , delta : int ) Direct copy from another thread, with index speci�ed relatively
sh�_xor (var , mask : int ) Direct copy from another thread, with index speci�ed by a XOR relative to the current thread index
all ( predicate ) Returns true if the predicate for all threads within the thread block evaluates to non-zero
any( predicate ) Returns true if the predicate for any thread within the thread block evaluates to non-zero
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Method Description

ballot ( predicate ) Evaluates the predicate for all threads within the thread block and returns a mask where every bit
corresponds to one predicate from one thread

match_any(value) Returns a mask of all threads that have the same value
match_all (value) Returns a mask only if all threads that share the same value, otherwise returns 0.

Warp shu�ling operations

Cooperative groups using warp-shu�ing operations can be used to implement a parallel reduction. The advantage of this
approach is that the sum of the elements of the vector can be calculated without using shared memory. Note that the code
below assumes that the warp size is 32. It is possible to use a for-loop instead, however, this degrades the performance
somewhat. Because coalesced_threads are only supported by the CUDA backend, it is also required to set the code attribute
{! kernel target ="nvidia_cuda "} .

function y : scalar = __kernel__ reduce_sum(coalesced_threads : thread_block, x : vec’unchecked,
blkpos : int, pos : int, blkdim : int, blkcnt : int)
{!kernel target="nvidia_cuda"}
lane = coalesced_threads.thread_idx
total = 0.0

for index=pos..blkdim*blkcnt..numel(x)-1
val = x[index]
val += coalesced_threads.shfl_down(val, 16)
val += coalesced_threads.shfl_down(val, 8)
val += coalesced_threads.shfl_down(val, 4)
val += coalesced_threads.shfl_down(val, 2)
val += coalesced_threads.shfl_down(val, 1)
total += val

endfor

% Atomics for accumulation
if lane==0

y += total
endif

endfunction

In general is bene�cial when: * Shared memory is already used by the kernel for other purposes (e.g., caching other variables)
* When the data to be aggregated does not �t in the shared memory * To maximize the occupancy by reducing shared memory
pressure.

Remark: due to the atomic operation +=, the result is not deterministic: �oating point rounding errors depend on the order
of the operations. For an atomic add, the order of operations is not speci�ed. This can be solved by storing the intermediate
results in a vector, and summing this vector independently.

Warp shu�ing operations can be even used to implement operations like convolutions. Below, we give an example of a
Gaussian �lter on an image:

function y = gaussian_filter_warpshuffle(x, fc, n)
function [] = __kernel__ gaussian_filter[N:int](x : cube, y : cube’unchecked, z : cube, fc : vec’

hwconst’unchecked, n : int, coalesced_threads : thread_block, pos : vec3)
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{!kernel target="nvidia_cuda"}
thread_idx = coalesced_threads.thread_idx
x_warp = zeros(N)
for i=0..N-1

{!unroll}
x_warp[i] = x[pos + [0, i * coalesced_threads.size, 0]]

endfor
syncthreads(warp)
total = 0.0
for i=0..n-1

[k,l] = ind2pos([2, coalesced_threads.size], thread_idx+i)
val = coalesced_threads.shfl(x_warp, l)
total += val[k] * fc[i]

endfor
z[pos] = total % Intermediate result

syncthreads(grid)
% Shuffle pos
blkpos = mod(pos, [32,32,1])
pos2 = pos - blkpos + [blkpos[1], blkpos[0], 0]

for i=0..N-1
{!unroll}
x_warp[i] = z[pos2 + [i * coalesced_threads.size, 0, 0]]

endfor
syncthreads(warp)
total = 0.0
for i=0..n-1

[k,l] = ind2pos([2, coalesced_threads.size], thread_idx+i)
val = coalesced_threads.shfl(x_warp, l)
total += val[k] * fc[i]

endfor
y[pos2] = total

endfunction
y = uninit(size(x))
z = uninit(size(y))
parallel_do([size(y,0..2),[32,32,1]], x, y, z, fc, n, gaussian_filter[2])

endfunction

The idea is here to cache intensities of the input image in the registers. By using the warp shu�ing operations, each
thread can then access the cached intensity of another thread. Note that warp and grid synchronization are required in this
particular implementation. The above code assumes that N = ceil (( warp_size−1+numel(fc))/warp_size).

Memory optimizations

To optimize memory transfer and access, the Quasar compiler/run-time employ a variety of techniques, many of them
relying on underlying CUDA features.

When a kernel function is started (using the parallel_do function), it is made sure that all kernel function arguments are
copied to the GPU, and that the arguments are up to date. This is the automatic memory management function, that is
performed by the Quasar run-time. The automatic memory management works the best with large blocks of memory.
Therefore, in case of small structures, such as nodes of a linked lists, several connected structures are grouped in a graph
and the graph is transferred at once to the device. However, in some cases it is useful to perform some extra memory
optimizations.
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Modi�ers ’const and ’nocopy

The types of kernel function parameters can have the special modi�ers ’ const and ’nocopy. These modi�ers are added
automatically by the compiler after analyzing the kernel function. The meaning of this modi�ers is as follows:

Type modi�er Meaning

’ const The vector/matrix variable is constant and only being written to
’nocopy The vector/matrix variable does not need to be copied to the device before the

kernel function is called

The advantage of these type modi�ers is that it permits the run-time to avoid unnecessary memory copies

1. between host and the device
2. between devices (in multi-GPU processing modes)
3. between linear device memory and texture memory

In case of parameters with the ’ const modi�er, the dirty bit of the vector/matrix does not need to be set. For ’nocopy, it
su�ces to allocate data in device memory without initializing it.

Furthermore, the modi�ers are exploited in later optimization and code generation passes, e.g. to take automatic advantage
of caching capabilities of the GPU (see below).

An example of the modi�ers is given below:

function [] __kernel__ copy_kernel(x:vec’const,y:vec’nocopy,pos:int)
y[pos] = x[pos]

endfunction
x = ones(2^16)
y = zeros(size(x))
parallel_do(numel(x),x,y,kernel)

Here ’nocopy is added because the entire content of the matrix y is overwritten.

Constant memory

NVIDIA GPUs typically provide 64KB of constant memory that is treaded di�erently from standard global memory. In some
situations, using constant memory instead of global memory may reduce the memory bandwidth (which is bene�cial for
kernels). Constant memory is also most e�ective when all threads access the same value at the same time (i.e. the array
index is not a function of the position). Kernel function parameters can be declared to reside in constant memory by adding
the hw_const modi�er:

function [] = __kernel__ kernel_hwconst(x : vec, y : vec, f : vec’hwconst, pos : int)
sum = 0.0
for i=0..numel(f)-1

sum += x[pos+i] * f[i]
endfor
y[pos] = sum
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endfunction

The use of constant memory may have a dramatic impact on the performance. In the above example, the computation time
was improved by a factor 4x, by only adding ’hwconst modi�er to the kernel function.

Texture memory

With the advent of CUDA, the GPU’s sophisticated texture memory can also be used for general-purpose computing. Al-
though originally designed for OpenGL and DirectX rendering, texture memory has properties that make it very useful
for computing purposes. Like constant memory, texture memory is cached on chip, so it may provide higher e�ective
bandwidth than obtained when accessing the o�-chip DRAM. In particular, texture caches are designed for memory access
patterns exhibiting a great deal of spatial locality.

The Quasar run-time allocates texture memory (via CUDA arrays) and transparently copies data to the arrays when neces-
sary. Texture memory has the advantage that it can e�ciently be accessed using more irregular access patterns, due to the
texture cache.

The layout of the CUDA array is generally di�erent from the memory layout in global memory. For example, there is a
global option that the user can choose to use 16-bit �oat textures (instead of the regular 32-bit �oat textures). This not only
reduces the amount of texture memory but also o�ers performance enhancements due to the reduced memory bandwidths
(e.g. for real-time video processing). When necessary, the Quasar run-time performs the necessary conversions.

In Quasar, it is possible to indicate that a vector/matrix needs to be stored as a hardware texture, using special type modi�ers
that can be used for kernel function argument types:

Type modi�er Meaning

’hwtex_nearest Hardware textures with nearest neighbor interpolation
’hwtex_linear Hardware textures with linear (1D), bilinear (2D) or trilinear (3D) interpolation

An example is the following interpolation kernel function:

function [] = __kernel__ interpolate_hwtex (y : mat, x : mat’hwtex_linear’clamped, scale : scalar, pos
: ivec2)

y[pos] = x[scale * pos]
endfunction

Here, the type modi�ers hwtex_linear and clamped are combined.

Note that in Quasar, several built-in type modi�ers de�ne what happens when data is accessed outside the array/matrix
boundaries (as mat’hwtex_linear’clamped in the above example):

Type modi�er Meaning

’unchecked No boundary checks are being performed
’checked An error is generated when the array/matrix boundaries are exceeded
’ circular Access with circular extension
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Type modi�er Meaning

’mirror Access with mirror extension
’clamped Access with clamping
’ safe The array/matrix boundaries are extended with zeros

When using GPU hardware textures, the boundary conditions ’ circular , ’mirror, ’clamped and ’ safe are directly supported
by the hardware, leading to an extra acceleration.

Additionally, multi-component hardware textures, can also be de�ned, using the following type modi�ers:

Type modi�er Meaning

’hwtex_nearest(n) Hardware textures with nearest neighbor interpolation, and n components
’hwtex_linear(n) Hardware textures with linear (1D), bilinear (2D) or trilinear (3D) interpolation, and n

components

The advantage is that complete RGBA-values can be loaded with only one texture lookup.

For devices with compute architecture 2.0 of higher, writes to hardware textures are also supported, via CUDA surface
writes. This is done fully automatically and requires no changes to the Quasar code.

Correspondingly, a matrix can reside in (global) device memory, in texture memory, in CPU host memory, or even all of the
above. The run-time system keeps track of the status bits of the variables.

Non-coherent Texture Cache

As an alternative for devices with compute capability 3.5 (or higher), the non-coherent texture (NCT) cache can be used.
The NCT cache allows the data still be stored in the global memory, will utilizing the texture cache for load operations. This
combines the advantages of the texture memory cache with the �exibility (ability to read/write) of the global memory.

In Quasar, kernel function parameters can be declared to be accessed via the NCT cache, by adding the modi�ers ’hwtex_const.
Internally, hwtex_const generates CUDA code with the __ldg () intrinsic.

Optionally, depending on the compiler settings, the compiler may also add hwtex_const modi�ers automatically, when de-
termined to be bene�cial.

Host-pinnable memory

The memory transfer between CPU and GPU and vice versa is accelerated when page-locked host memory (PLH) is used. To
take advantage of this acceleration, the Quasar runtime system will automatically allocate data in the PLH memory when
needed. Note that PLH memory is even required in concurrent kernel execution mode (see below) in order for memory
transfers to overlap with kernel executions.

The use of pinned host memory can be controlled using the runtime setting RUNTIME_CUDA_ENABLEPINNEDHOSTMEM.
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Uni�ed memory

CUDA uni�ed memory is a feature introduced in CUDA 6.0. For uni�ed memory, one single pointer is shared between CPU
and GPU. The device driver and the hardware make sure that the data is migrated automatically between host and device.
This facilitates the writing of CUDA code, since no longer pointers for both CPU and GPU need to be allocated and also
because the memory is transferred automatically.

In Quasar, uni�ed memory can be used by setting RUNTIME_CUDA_UNIFIEDMEMORYMODE to Always in Quasar.Runtime.
Con�g.xml.

Streams and Concurrency

Quasar has two execution modes that can be speci�ed by the user on a global level (typically from within the Quasar Redshift
IDE):

• non-turbo: perform only one kernel at the time (synchronous kernel execution)
• turbo: overlap kernels/memory transfers when possible (asynchronous kernel execution)

The turbo execution mode is fully automatic and internally relies on the asynchronous CUDA API functions. In the back-
ground, dependencies between matrix variables, kernels etc. are being tracked and the individual memory copy operations
and kernel calls are automatically dispatched to one of the available CUDA streams. This way, operations can be performed
in parallel on the available GPU hardware. Often, the turbo mode enhances the performance by 10%-30%. Also, automatic
multi-GPU processing can be obtained using this concurrency model (see further).

Moreover, in Quasar, the streaming mechanism is expanded to the CPUs, which allows con�gurations in which for example,
4 CPU streams (threads) are allocated, 2 GPUs with each 4 streams. A load balancer and scheduler will divide the workload
over the di�erent CPU and GPU streams. It is possible to con�gure the number of CPU streams and the number of GPU
streams. For example, on an 8-core CPU, a two parallel loops may run concurrently each on 4 cores. Idem for a system with
two GPUs, each GPU may have 4 streams and kernel functions can be scheduled to in total 8 streams.

For inter-device synchronization purposes (e.g., between CPU and GPU), stream callbacks (introduced in CUDA 5.0) are
used automatically.

The run-time system can be con�gured to use host-pinnable memory by default. This the advantage that kernels can directly
access memory on the CPU, but also in turbo mode, the asynchronous memory copy operations from GPU to the host are
non-blocking.

Memory access pattern and computation optimizations

Kernel tiling

Kernel tiling is a kernel function code transformation that divides the data in blocks of a �xed size. There are three possible
modes:
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1. Global kernel tiling: the data is subdivided in blocks of, e.g., 32x32x1 or 32x16x1. All threads in the grid collaborate to
�rst calculate the �rst block, then the second block, and so on. The loop that traverses all these blocks is placed inside
the kernel function. Note that the blocks normally don’t corresponds to the GPU (CUDA) blocks. It is very common
that a 1D block index traverses 2D or 3D blocks (also called grid-strided loop). Global kernel tiling has the following
bene�ts:

• Threads are reused; the maximum number of GPU blocks can be reduced, saving thread initialization and de-
struction overhead

• Calculations independent of the block can be placed outside of the tiling loop
• Less dependency on the GPU block dimensions, resulting in more portable code

A disadvantages of global kernel tiling is that the resulting kernels are more complex and typically use more registers.

Global kernel tiling can be activated by placing one of the following code attributes in the kernel function: {! kernel_tiling
dims =[32,16,1]; mode="global"; target ="gpu"} {! kernel_tiling dims=auto; mode="global"; target ="gpu"} The target (e.g.,

cpu, gpu) speci�es for which platform the kernel tiling will be performed. It is possible to enable tiling for one plat-
form but not for the other. By combining multiple code attributes it is also possible to specify di�erent block sizes for
di�erent platforms. In case of automatic tiling dimensions, the runtime will search for suitable block dimensions that
optimize the occupancy.

For certain kernels (e.g., involving parallel reduction, shared memory accumulation, . . . ), global kernel tiling is per-
formed automatically. Kernels that use grid-level synchronization primitives (without TCC driver mode cooperative
grouping) are also automatically tiled globally. This is also required in order for kernel fusion (see lower) to work
correctly.

2. Local kernel tiling: here, each thread performs the work of N consecutive work elements. Instead of having 1024
threads process a block of size 32x32, we have 256 threads processing the same block. Each thread then processes data in
a single instruction multiple data (SIMD) fashion. Moreover, the resulting instructions can be even mapped onto SIMD
instructions (e.g., CUDA SIMD/SSE/AVX/ARM Neon), if the hardware supports them. In the following example, a sim-
ple box �lter is applied to a matrix with element type uint8. function [] = __kernel__ �lter (im8 : mat[uint8 ], im_out :
mat[uint8 ], K : int , pos : ivec (2) ) [m,n] = pos r2 = vec[ int ](4) for x =0.. K−1 r2 += im8[m,n+x+(0..3) ] endfor im_out[m
,n +(0..3) ] = int ( r2 /(2∗ K)) endfunction Local kernel tiling can be activated by placing the following code attribute in the
kernel function: {! kernel_tiling dims =[1,1,4]; mode="local "; target ="gpu"} In case purely SIMD processing is intended,
it is better to use the following code attribute (see below): {! kernel_transform enable="simdprocessing "} Advantages of
local kernel tiling:

• Less threads, so less thread initialization and destruction overhead
• mapping onto SIMD possible (when the block dimensions are chosen according to the GPU platform).
• For some operations, recomputation of values can be avoided.

Disadvantages:

• The resulting kernels use more registers, which may negatively impact the performance in some cases (e.g. reg-
ister limited kernels)

• Not all operations may be accelerated by hardware SIMD operations (for example, division operations).
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• The compiler needs to ensure that the data dimensions are a multiple of the block size. If this is not the case,
extra “cool down” code is added.

3. Hybrid tiling: combines the advantages of global and local kernel tiling. To activate hybrid tiling, code attributes
for both local and global tiling can be placed inside the kernel function: {! kernel_tiling dims=auto; mode="global";
target ="gpu"} {! kernel_tiling dims =[1,1,4]; mode="local "; target ="gpu"} Hybrid kernel tiling usually occurs as a result
of several compiler optimizations.

SIMD data types

CUDA vector instructions interact with 32-bit words. Depending on the precision (8-bit integer, 16-bit integer or 16-bit
�oating point), the vector length is either 2 or 4. The following SIMD datatypes are de�ned in �oattypes .q and inttypes .h:

type i8vec4 : vec[int8](4)
type hvec2 : vec[scalar’half](2)

Floating point SIMD data types:

The half-precision �oating point format (FP16) is useful to reduce the device memory bandwidth for algorithms which are
not sensitive to the reduced precision. For half, only integers between -2048 and 2048 can exactly be represented. Integers
larger than 65520 or smaller than -65520 are rounded toward respectively positive and negative in�nity.

Next to the reduced bandwidth, starting with the Pascal architecture, the GPU also o�ers hardware support for computations
using this type. To gain maximal performance bene�ts, it is best to use the 32-bit length 2 SIMD half type (hvec2). Use of
hvec2 typically results in two numbers being calculated in parallel, leading to a performance that is similar to one single
precision �oating point (FP32) operation. However, a Volta or Turing GPU is required to obtain performance bene�ts from
using calculation in half precision format. For Kepler, Maxwell and Pascal GPUs, hardware support for operations in half
precision is notably slow, therefore it is best to use the half type only for storage purposes (i.e., calculations are performed
in the single-precision �oating point type).

The following table shows the operations that have been accelerated using half types. For unsupported operations, the
computation will be performed in FP32 format, leading to extra conversions between FP32 and FP16.

Integer SIMD data types:

CUDA supports SIMD operations for 8-bit and 16-bit integer vectors that �t into a 32-bit words. Below is a table of the
operations that are accelerated. For unsupported operations, the computation will be performed in 32-bit integer format,
leading to extra conversions between 32-bit and 8/16-bit integer formats.

Automatic vectorization and SIMD processing:

Automatic vectorization can be enabled using:

{!kernel_transform enable="simdprocessing"}

The SIMD processing transform will automatically generate the kernel_tiling code attribute and will set the block dimensions
based on the best suited SIMD width for the current platform. For half precision �oating point types, the SIMD width is 2.
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For 8-bit integer types, the SIMD width is 4. The SIMD processing transform will identify read accesses and determine the
best suitable SIMD width.

Memory coalescing transform

Memory coalescing means that when the threads in a block are accessing consecutive memory locations, all the accesses are
combined into a single request (i.e., coalesced) by the GPU hardware. This however requires that kernels are written such
that subsequent threads in a block access consecutive memory locations. For 1D kernels, this is often not a problem, but 2D,
3D kernels may not respect the memory coalescing condition.

When the data access pattern does not allow memory coalescing but a direct manipulation of the position vector pos does
(e.g., via [pos [0], pos [2], pos[1]]), the Quasar compiler will perform this dimension permutation operation automatically.

By default, when using directly the position vector pos, Quasar launches kernels so that memory coalescing is always
possible. The following code gives an example of a kernel that accesses [pos [1], pos[0]] rather than pos.

function [] = __kernel__ kernel(im : mat’unchecked, im_out : mat’unchecked, pos : ivec2)
{!tuning_param name="$param_memcoalescing"; default=true}
im_out[pos[1],pos[0]] = im[pos[1],pos[0]]

endfunction

parallel_do(size(im_out,[1,0]),im,im_out,kernel)

By setting {! tuning_param name="$param_memcoalescing"; default=true} the compiler will automatically correct the position
vector and swap the elements of the size vector in the parallel_do call when needed.

Kernel fusion

Nowadays, it is not uncommon that a convolution operation on a Full HD color image takes around 10 microseconds.
However, with execution times so low, for many GPU libraries this has the consequence that the bottleneck moves back
from the GPU to the CPU: the CPU must ensure that the GPU is busy at all times. This turns out to be quite a challenge
on its own: when invoking a kernel function, there is often a comined runtime and driver overhead in the order of 5-10
microseconds. That means that all launched kernel functions must provide su�cient workload. Because just a �ltering
operation on a Full HD image is already in the 5-10 microsecond range of execution time, many smaller parallel operations
(e.g., operations with data dimensions< 512∗1024) are often not suited anymore for the GPU, unless the computation is
su�ciently complex. In the new features of CUDA 10 it is mentioned:

“The overhead of a kernel launch can be a signi�cant fraction of the overall end-to-end execution time.”

CUDA 10 introduces a graph API, which allows kernel launches to be prerecorded in order to be played back many times
later. This technique reduces CPU kernel launch cost, often leading to signi�cant performance improvements. We notice
however that CUDA graphs are a runtime technique; its compile-time equivalent is kernel fusion. In kernel fusion, several
subsequent kernel launches are fused into one big kernel launch (called amegakernel). In older versions of CUDA, dependent
kernels could not easily be fused, because every kernel execution imposes an implicit grid synchronization at the end of
execution. This grid synchronization could only be avoided by using CUDA streams which allows independent kernels to
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be processed concurrently. More recently, grid barriers (which synchronizes “all threads” in the grid of a kernel function)
have become available, either via cooperative groups (in CUDA 9) or via emulation techniques. These grid barriers open the
way to kernel fusion of dependent kernels.

Obviously, any synchronization point such as a grid barrier involves a certain overhead, a time that GPU threads spend
waiting for other threads to complete. The total overhead can be minimized by minimizing the number of synchronization
points. On the other hand, grid barriers are entirely avoided when there are no dependencies between the kernels. This
automatically means that reordering of kernel launches is an essential step of the automatic kernel fusion procedure.

The application of compile-time kernel fusion also has several other performance related bene�ts: when multiple kernels
become one kernel often temporary data stored in global memory can be entirely moved to the GPU registers. Since accessing
GPU registers is signi�cantly faster than reading from/writing to global memory, the execution performance of kernels can
be vastly improved. In addition, the compiler can reuse memory resources and eliminate memory allocations, essentially
leading a static allocation scheme, in which all temporary bu�ers are preallocated, prior to launching the megakernel.

The kernel fusion also has a number of complicating factors: * It is neccessary to determine at compile-time that arrays
(vectors, matrices, . . . ) have the same size. Luckily, Quasar’s high level inference engine allows to achieve this. * Kernels are
often launched with di�erent data (i.e., grid and block) sizes, while launching a megakernel requires one size to be passed. In
Quasar, this is achieved by performing automatic kernel tiling. * Kernels often operate on data of di�erent dimensionalities
(vector, matrix, . . . ). In Quasar, this is solved by performing a kernel �attening transform in combination with a grid-strided
loop.

The remedies for di�erent data dimensions each involve a separate overhead, usually in the form of more registers used by
the megakernel. This may lead to register-limited kernel launches, in which some GPU multiprocessors are underutilized
because of insu�cient register memory. Therefore, Quasar includes a dynamic programming based optimization algorithm
that takes all these factors into account.

In short, kernel fusion in Quasar is achieved by placing:

{!kernel_fusion strategy="smart"}

inside the parent function of the kernel functions. Important to realize is that all functions called by this parent function
are inlined, so that if the callees launch kernel functions on their own, these kernel fusions can also be fused into the mega
kernel. The compiler therefore sees a sequence of kernel launches and has to determine 1) a suitable order to launch the
kernels and 2) whether the kernels are suited to perform kernel fusion.

When performing kernel fusion, a strategy needs to be passed, which controls the cost function used by the optimization
algorithm:

Kernel fusion strategy Purpose

smart Let the Quasar compiler decide what is the best strategy
noreordering Performs kernel fusion, without reordering the kernel launches
minsyncgrid Minimizes the number of required grid synchronization barriers
minworkingmemory Minimizes the total amount of (global) memory required for executing the fused kernel
manual Kernel fusion barriers placed in the code determine which kernels are fused
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Kernel fusion barriers {! kernel_fusion barrier } may be added to prevent kernels from being fused. In this case, M kernels
are fused into N kernels with 1 < N <= M.

Under some circumstances (which also depend on the kernel fusion strategy), the compiler may waive fusion of certain ker-
nels. The reasons can be inspected in the kernel fusion code transform log, which is accessible through the code workbench
window in Redshift.

CuFFT: CUDA FFT library

The CUDA �t library is natively supported using the functions �t1 , �t2 , �t3 , i�t1 , i�t2 , i�t3 and real-valued versions
real ( i�t1 (x) ) , real ( i�t2 (x) ) , real ( i�t3 (x) ) . Often, one is interested in the real part of the inverse Fourier transform. Via a
reduction (which is de�ned in Quasar),

reduction x -> real(ifft3(x)) -> irealfft3(x)

all occurrences of real ( i�t3 (x) ) will be converted to the real-valued version of the i�t3 . Internally Quasar uses the CUDA
FFT plan with C2R option for implementing real ( i�t1 (x) ) . When the input is real-valued, Quasar will use the R2C option.
The CuFFT module also supports automatic streaming and multi-GPU processing (note however that Tesla Compute Cluster
cooperative FFTs over multiple devices are currently not supported). For small data sizes, or on CPU target platforms, the
FFTW library is used as a fallback.

The semantics of �t1 and �t2 slightly di�er. �t1 applies an FFT along the last dimension (for example, the rows of a matrix)
while �t2 performs a 2D FFT along the �rst and second dimension. All other dimensions are used as batch (when there are
other non-singleton dimensions, a CUDA many FFT plan is created).

To explicitly specify along which dimensions the FFT should be applied, the �tn function can be used. For example, �tn
(A : cube, [1, 2]) applies a 2D FFT along the second and third dimension. �tn can be used to perform 4D or 5D FFTs.
The function internally uses combinations of 1D, 2D and 3D FFTs as only these FFTs are available in CuFFT. The function
automatically handles all strides and determines the best suited batch dimensions. In some more complex situations, �tn
may result in a sequence of FFTs.

CuFFT plan cache

To speed up subsequent FFT calls, Quasar uses a LRU cache to store FFT plans. FFT plans are allocated for �xed input
dimensions. The �rst time that the �t function is called, the execution time may be much higher than other times, because
the FFT plan is being constructed. Because each plan uses some amount of GPU memory, the number of plans that can be
stored in the cache is limited. The value can be con�gured via the runtime setting RUNTIME_FFT_PLAN_MAXCACHESIZE.

CuDNN: CUDA Deep Neural Networks library

By importing "Quasar.DNN.dll", many functions of the cuDNN library can be accessed directly from Quasar.

The Quasar DNN uses the NCHW representation (4D) or NCDHW (5D) for tensors.
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NCHW means that:

• The �rst dimension represents the batches
• The second dimension represents the channels/feature maps
• The third dimension is the vertical image dimension
• The fourth dimension is the horizontal image dimension

NCDHW means that:

• The �rst dimension represents the batches
• The second dimension represents the channels/feature maps
• The third dimension is the depth image dimension
• The fourth dimension is the vertical image dimension
• The depth dimension is the horizontal image dimension

For convolution �lters, possible representations of the �lter mask are PCHW and PCDHW where C is the number of input
channels/feature maps and where P is the number of output channels/feature maps.

This means that a cuDNN convolution �lter performs a P x C matrix multiplication along the channels. The batches are
processed individually. It is therefore possible to perform both 2D and 3D convolutions.

Structures:

qdnn_conv_descriptor: convolution descriptor for cuDNN

Property purpose

pad_w speci�es the horizontal padding of the �lter mask
pad_h speci�es the vertical padding of the �lter mask
pad_d speci�es the depth padding of the �lter mask
u horizontal �lter stride
v vertical �lter stride
d depth �lter stride
dilation_w horizontal dilation factor
dilation_h vertical �lter stride
dilation_d depth �lter stride
dims dimensionality of the convolution (4 or 5)
fwd_algo speci�es the forward convolution algorithm
bwd_data_algo speci�es the backward data convolution algorithm
bwd_�lter_algo speci�es the backward �lter convolution algorithm
math_type speci�es the hardware unit to use (default, tensorop)
mode sets the convolution mode (convolution / crosscorrelation)

As padding values, typically half the size of the �lter mask (width, height or depth) is used. The stride values allows upscaling
the �lter mask by inserting zeros. The dilation values allow the resulting image to be subsampled. Most commonly, the stride
and upscaling factor is one.
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In 4D, the convolution formula is as follows (using cross-correlation mode):

yn,k,p,q =

C∑
c

R∑
r

S∑
s

xn,c,p·u+r·dilationh,q·v+s·dilationw
wk,c,r,s

In 5D the formula becomes (using cross-correlation mode):

yn,k,o,p,q =

C∑
c

T∑
t

R∑
r

S∑
s

xn,c,o·d+t·dilationd,p·u+r·dilationh,q·v+s·dilationwwk,c,t,r,s

By setting mode="convolution" (default), the �lter mask is �ipped horizontally, vertically (and in depth).

Grouped convolutions can be enabled by setting “unconventional” values for the P and C parameters of the �lter mask. The
following grouped convolutions are currently supported:

Description Input tensor Filter tensor Output tensor

Normal case NxCxHxW KxCxH’xW’ NxKxHxW
Grouped I NxCxHxW Kx1xH’xW’ NxKCxHxW
Grouped II NxKCxHxW 1xKxH’xW’ NxCxHxW

Grouped I allows a convolution to be applied separately to every color channel, mapping C channels onto KC channels.
Grouped II maps KC channels onto C channels, performing a Kx1 matrix multiplication within each group of K channels.

The following convolution algorithms are available:

Algorithm Forward Algorithm Backward data Backward �lter

Auto x Auto x x
FFT x AlgoFFT x x
FFTwithtiling x N/A
GEMM x N/A
implicitGEMM x N/A
implicitprecompGEMM x N/A
winograd x winograd x x
N/A Algo0 x x
N/A Algo1 x x

qdnn_pooling_descriptor: pooling descriptor for cuDNN

Property purpose

pad_w speci�es the horizontal padding of the pooling window
pad_h speci�es the vertical padding of the pooling window
pad_d speci�es the depth padding of the pooling window
w width of the pooling window
h height of the pooling window
d depth of the pooling window
stride_w horizontal pooling stride
stride_h vertical pooling stride
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Property purpose

stride_d depth pooling stride
mode sets the convolution mode (Max / AverageCountIncludePadding / AverageCountExcludePadding)
maxpooling_nanopt sets the NaN propagation mode (NotPropagateNan / PropagateNan)

Note that when wrong parameter values are set, cuDNN may give a runtime error during the execution of the cudnn_convolution_
∗ functions.

qdnn_activation_descriptor : activation descriptor for cuDNN

Property purpose

mode sets the activation mode (Sigmoid, Relu, Tanh, ClippedRelu, Elu, Identity )
reluNaNOpt sets the NaN optimization method (NotPropagateNan / PropagateNan)
reluCeiling clipping threshold to be used when the activation mode is ‘clippedrelu’

Functions:

Function Description

cudnn_activation_forward Calculates the gradient of the neural activation function
cudnn_activation_backward Applies a pointwise neural activation function to the input signal
cudnn_batchnormalization_forward_inference Calculates an inference step of the batch normalization algorithm
cudnn_batchnormalization_forward_training Calculates a forward pass of the batch normalization algorithm
cudnn_batchnormalization_backward Calculates a backpropagation step of the batch normalization algorithm
cudnn_convolution_forward Calculates a forward convolution or cross-correlation using the cuDNN library
cudnn_convolution_backward_bias Calculates the gradient of the convolution with respect to the bias
cudnn_convolution_backward_data Calculates the gradient of the convolution with respect to the data
cudnn_convolution_backward_�lter Calculates the gradient of the convolution with respect to the �lter mask
cudnn_hwcn_tensor Converts a 4D tensor from NCHW format to HWCN format
cudnn_hwdcn_tensor Converts a 5D tensor from NCDHW format to HWDCN format
cudnn_ncdhw_tensor Converts a 5D tensor from HWDCN format to NCDHW format
cudnn_nchw_tensor Converts a 4D tensor from HWCN format to NCHW format
cudnn_pooling_backward Calculates the gradient of the pooling operation
cudnn_pooling_forward Performs pooling of the input values
cudnn_pooling_getforwardoutputdim Provides the output tensor dimensions after pooling has been applied
cudnn_softmax_backward Calculates the gradient of the softmax function
cudnn_softmax_forward Calculates the softmax function
cudnn_version Returns the version of the currently installed cuDNN library.

Note: recursive neural network functions from cuDNN are currently not supported.

CuBLAS, CuSolver: CUDA Basic Linear Algebra library

Several functions from the cuBLAS and cuSolver libraries are available in Quasar:
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Function Description

blas_amax Determines the smallest index of the element with the maximum magnitude of the input
vector

blas_amin Determines the smallest index of the element with the minimum magnitude of the input
vector

blas_asum Calculates the sum of the absolute values of the input vector/matrix
blas_axpy Calculates matrix scaling and addition
blas_chol Calculates the Cholesky decomposition of a Hermitian positive de�nite matrix
blas_cholsolve Solves a linear system of equations using a previously calculated Cholesky decomposition
blas_dot Calculates the dot-product of two vectors or matrices
blas_geam Calculates matrix-matrix addition/transposition
blas_gemm Calculates the matrix-matrix multiplication and addition
blas_gemv Calculates the matrix-vector multiplication
blas_gesvd Calculates the singular value decomposition of the matrix A
blas_hermtranspose Calculates the Hermitian transpose of the matrix X
blas_lu Performs LU decomposition of the matrix X
blas_lubatched Performs LU decomposition of a stack of matrices
blas_lumatinvbatched Calculates the matrix inverse of a stacked set of input matrices
blas_lusolve Solves a linear system of multiple right-hand sides
blas_lusolvebatched Solves multiple linear systems with multiple right-hand sides
blas_matinvbatches Calculates the matrix inverse of a stacked set of input matrices
blas_nrm2 Calculates the Euclidean norm of the input vector
blas_q Calculates the Q factor of a QR matrix
blas_qr Calculates the QR factorization of an m x n matrix A
blas_scal Multiplies the input matrix with a constant
blas_transpose Calculates the transpose of the input matrix using cuBLAS
blas_trsv Solves a triangular system of equations with a single right-hand side
blas_version Returns the version of the currently installed cuBLAS library

OpenGL interoperability

For visualization purposes, OpenGL is used automatically. To avoid copying the data to the system (CPU) memory, Quasar
uses the OpenGL interoperability features of CUDA, via global memory and/or texture memory (CUDA array) mappings.
This way, visualization is extremely fast! To display an image using OpenGL, it su�ces to call the imshow() function:

im = imread("image.png")
imshow(im)

Similarly, a video sequence can be displayed, using the hold function, which will make sure that the image is updated in the
current display window.

stream = vidopen("movie.mp4")
sync_framerate(stream.avg_frame_rate) % Sets the display frame rate

hold("on")
while vidreadframe(stream)

frame = float(stream.rgb_data)
imshow(frame)

endwhile
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This short fragment of code is enough to show a video sequence in a display window! Moreover, the video is shown using
real-time 2D OpenGL rendering. In particular, the imshow function creates an OpenGL context, transfers the content of the
frame to CUDA texture memory (if it is not already there) and renders the result using CUDA-OpenGL interoperability.

During the visualization, Quasar datatypes are automatically mapped onto corresponding OpenGL types. Therefore matrices
of di�erent data types can easily be visualized (e.g. 16-bit integer, 32-bit �oat etc.)

Dynamic parallelism

CUDA dynamic parallelism allows a CUDA thread to spawn its own sub-thread. This is particularly useful for tasks with
mixed coarse grain and �ne grain parallelism. In Quasar, nested parallelism (obtained by calling the parallel_do function
from a kernel/device function) is mapped automatically onto the CUDA dynamic parallelism. Thereby, the resulting program
is linked with the CUDA device runtime.

There are several advantages of the dynamic parallelism:

• More �exibility in expressing the algorithms
• The nested kernel functions are (or will be) mapped onto CUDA dynamic parallelism on Maxwell/Kepler devices.
• The high-level matrix operations from the previous section are automatically taking advantage of the nested paral-

lelism.

In several cases, the mapping onto dynamic parallelism is implicit. Consider the following loop:

for m=0..size(y,0)-1
for c=0..size(y,2)-1

row = y[m,:,c]
y[m,:,c] = row[numel(row)-1..-1..0]

endfor
endfor

Inside the loop, the vector operations will be expanded by the compiler to a kernel function. When subsequently the two-
dimensional loop is parallelized, nested parallelism is obtained.

Multi-GPU

Quasar supports multi-device con�gurations, which allows several GPUs to be combined with a CPU. For the programmer,
outside kernel/device functions, the programming model is sequential in nature, irrespective of whether one or multiple
GPUs are being used. The Quasar multi-GPU feature allows a program to be executed on multiple GPUs (let say 2), without
any/very little changes (see below) to the code, while bene�tting from a 2x acceleration.

To achieve this, the load balancing is entirely automatic and will take advantage of the available GPUs, when possible. The
run-time system supports peer-to-peer memory transfers (when available) and transfers via host pinned memory. Here,
host pinned memory is used to make sure that the memory copies from the GPU to the host are entirely asynchronous.

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 26

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342


2.17 Multi-GPU 2 CUDA FEATURES

Each of the GPU devices has its own command queue, this is a queue on which the load balancer places individual commands
that needs to be processed by the respective devices. The load balancer takes several factors into account, such as memory
transfer times, load of the GPU, dependencies of the kernel function, . . .

Hence all the memory transfers between the GPUs and between host and GPU, are managed automatically (and reduced
as much as possible). In some cases it is useful to have more control about which GPU is used for which task. This can be
achieved by explicitly setting the GPU device via a scheduling instruction:

{!sched gpu_index=0}
or
{!sched gpu_index=1}

This overrides the default decision of the load balancer. For for-loops this can be done as follows:

for k=0..num_tasks-1
{!sched gpu_index=mod(k,2)}
parallel_do(..., kernel1)
parallel_do(..., kernel2)

endfor

This way, each GPU will take care of one iteration of the loop. To enhance the load balancing over the GPUs, it may also be
more bene�cial to use the following technique

for k=0..num_tasks-1
{!unroll times=2; multi_device=true}
parallel_do(..., k, kernel1)
parallel_do(..., k, kernel2)

endfor

Here, {! unroll times=2; multi_device=true} unrolls the for loop twice, where each parallel_do function is launched on a dif-
ferent device. Internally, the following code is generated:

for k=0..2..num_tasks-1
{!sched gpu_index=0}
parallel_do(..., k, kernel1)
{!sched gpu_index=1}
parallel_do(..., k+1, kernel1)

{!sched gpu_index=0}
parallel_do(..., k, kernel2)
{!sched gpu_index=1}
parallel_do(..., k+1, kernel2)

endfor

Due to the asynchronous nature of the calls, the kernel functions will e�ectively be executed in parallel on two GPUs.
With NVidia nSight pro�ler, we obtained the following timeline for a non-trivial example (in particular, wavelet domain
processing of images):
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It can be seen that, despite the complex interactions on di�erent streams, the GPUs are kept reasonably busy with these load
balancing techniques.
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Example

To illustrate the mapping of Quasar code onto CUDA code, we give a more elaborated example in this section. We consider
a generic morphological operation, de�ned by the following functions:

op_min = __device__ (x,y) -> min(x,y)

function y = morph_filter[T](x : cube[T], mask : mat[T], ctr : ivec2, init : T, morph_op : [__device__
(T, T) -> T])

function [] = __kernel__ kernel (x : cube[T]’mirror, y, mask : mat[T]’unchecked’hwconst, ctr, init
, morph_op, pos)
{!kernel_transform enable="localwindow"}
res = init
for m=0..size(mask,0)-1

for n=0..size(mask,1)-1
if mask[m,n] != 0

res = morph_op(res,x[pos+[m-ctr[0],n-ctr[1],0]])
endif

endfor
endfor
y[pos] = res

endfunction

y = cube[T](size(x))
parallel_do(size(x),x,y,mask,ctr,init,morph_op,kernel)

endfunction

The morphological �lter is generic in the sense that the data types for the operation are not speci�ed, and also not the
operation morph_op. Initially, the code purely works in the global memory and requires several accesses to x (in practice,
depending on the size of the mask).

Using the following compiler transform steps/optimizations, the above code transformed to code that makes use of the
shared memory. In particular, the following steps are being performed:

1. specialization of the generic functions op_min and morph_�lter
2. inlining of op_min
3. constancy analysis of the kernel function parameters
4. dependency analysis of the kernel function parameters, determining a size for the local processing window
5. local windowing transform, generating code using shared memory and thread synchronization.
6. array/matrix boundary access handling.

The resulting Quasar code is:

function [y:cube] = morph_filter(x:cube,mask:mat,ctr:ivec2,init:scalar)=static
function [] __kernel__ kernel(x:cube’const’mirror,y:cube,mask:mat’const’unchecked’hwconst,ctr:

ivec2’const,init:scalar’const,pos:ivec3,blkpos:ivec3,blkdim:ivec3)=static

{!kernel name="kernel"; target="gpu"}
sh$x=shared((blkdim+[((((size(mask,0)-1)-ctr[0])+ctr[0])+1),((((size(mask,1)-1)-ctr[1])+ctr[1])

+1),1]))
sh$x[blkpos]=x[(pos+[-(ctr[0]),-(ctr[1]),0])]
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if (blkpos[1]<(((size(mask,1)-1)-ctr[1])+ctr[1]))
sh$x[(blkpos+[0,blkdim[1],0])]=x[(pos+[-(ctr[0]),-(ctr[1]),0]+[0,blkdim[1],0])]

endif
if (blkpos[0]<(((size(mask,0)-1)-ctr[0])+ctr[0]))

sh$x[(blkpos+[blkdim[0],0,0])]=x[(pos+[-(ctr[0]),-(ctr[1]),0]+[blkdim[0],0,0])]
endif
if ((blkpos[1]<(((size(mask,1)-1)-ctr[1])+ctr[1]))&&(blkpos[0]<(((size(mask,0)-1)-ctr[0])+ctr

[0])))
sh$x[(blkpos+[blkdim[0],blkdim[1],0])]=x[(pos+[-(ctr[0]),-(ctr[1]),0]+[blkdim[0],blkdim

[1],0])]
endif

blkof$x=((blkpos-pos)-[-(ctr[0]),-(ctr[1]),0])
syncthreads

res=init
for m=0..(size(mask,0)-1)

for n=0..(size(mask,1)-1)
if ($getunchk(mask,m,n)!=0)

res=min(res,sh$x[(pos+[(m-ctr[0]),(n-ctr[1]),0]+blkof$x)])
endif

endfor
endfor
y[pos,res]

endfunction

y=cube(size(x))
parallel_do(size(x),x,y,mask,ctr,init,kernel)

endfunction

Equivalently, the user could have written this kernel function from the �rst time. However, many users do not prefer to do
this, because 1) it requires more work, 2) it is prone to errors, 3) the code readability is reduced.

Finally, the generated kernel function can straightforwardly be translated to CUDA code.
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