
Contents

1 The Quasar Graphics Library 2
1.1 1. 2D rendering . 3

1.1.1 Functions overview . 3
1.1.2 Examples . 4

1.2 2. Plot and scatter functions . 6
1.3 3. 3D rendering . 7

1.3.1 3D Vector layer class . 9
1.3.2 Alpha blending . 10
1.3.3 3D vertex formats . 10
1.3.4 Drawing indexed primitives . 11

1.4 4. 3D rendering examples . 11
1.4.1 Point-cloud rendering example . 11
1.4.2 Lines, images, alpha blending, rasterization . 12

Title: Quasar Graphics Library

1

1 THE QUASAR GRAPHICS LIBRARY

The Quasar Graphics Library

This document gives a brief overview of the Quasar graphics library. The graphics library, unlike most other graphics
programming libraries, tightly integrates CPU and GPU functionality. In particular the library wraps the OpenGL API
(hardware rendering) and the Cairo drawing API (software rendering) in a uniform way. This allows the user to bene�t
from the advantages of both:

• Cairo: Highly precise graphics; export to .svg, .eps, .pdf
• OpenGL: fast hardware accelerated drawing (useful for visualization of large amounts of data).

But note that the rendering results may not be identical. This is similar to di�erences between software rendering and
hardware accelerated rendering (e.g. Quake) in the old days. More speci�cally, the OpenGL rendering of fonts is implemented
using textures, these textures may show bilinear interpolation artifacts when zooming in using geometric scaling transforms.
On the other hand, Cairo uses high quality true type font rendering methods.

The graphics library can be used to:

• add layers on top of existing visualization objects (e.g. imshow)
• alter images (stored in variables), by adding lines, text etc to them.
• describe vector-graphics and render to a matrix object.
• implement custom visualization objects (e.g. plots) directly from within Quasar.
• improve the user interactivity (e.g. displaying contours drawn using the mouse).

In Quasar, there are two distinct drawing classes:

• qvectorlayer : implements a purely 2D drawing layer. 2D drawing layers can be added to qimshow objects, or they can
be constructed out of the blue, without connection to any display object.

• qvectorlayer3d : implements a 3D drawing layer (OpenGL only). 3D drawing layers can only be attached to OpenGL
display objects (qgldisplay class).

However, both drawing classes can seamlessly be combined, for example, suppose you want to render a 3D scene with a 2D
head-up display (HUD) on top of it. Then you can use the qvectorlayer3d class for the 3D rendering and the qvectorlayer for
the HUD.

Notes: when working over SSH, or with a remote desktop connection, OpenGL is disabled and the Cairo rendering method
is selected. This is because of a limitation of the OpenGL driver.

Advantages of the Quasar graphics library:

• simpli�ed but �exible object model (compared to the harder to use OpenGL functions, Direct3D classes etc.)
• most of the OpenGL functionality is exposed (exception: pixel shaders that are replaced by __kernel__ functions)
• seemless integration (transparent transfers between OpenGL memory and CUDA memory/system memory)
• support for accessing the hardware rasterization functionality (capturing rendering and depth bu�ers)
• support for multiple display windows

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 2

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.1 1. 2D rendering 1 THE QUASAR GRAPHICS LIBRARY

1. 2D rendering

The typical work�ow of the 2D rendering in Quasar is as follows:

+-----------------+ +----------------------+ +---------+
|new(qvectorlayer)| --> |call drawing functions| --> |rasterize|
+-----------------+ +----------------------+ +---------+

It needs to be mentioned that the drawing functions actually have no direct e�ect. Instead, the vector layer keeps a list with
all drawing commands. Once the drawing command list is �nished, this list is used by the rasterize function to perform
the actual drawing. This also means that, when an image (in the form of a matrix) is being drawn, the vector layer object
keeps a reference to the image. When the image is no longer in use, the image will be destroyed, by reference counting. The
drawing command queue has three primary advantages:

• Ability to draw multiple times using the same vector layer. Suppose that you use the vector layer to construct a HUD
that is displayed on top of a 3D scene.

• Easy animation: when you use dynamically changing images (textures), there is no need to reinitialize the 2D vector
layer.

• Optimization: Quasar will internally optimize the drawing commands whenever possible (e.g. by grouping similar
commands and passing them at once to the hardware).

Only at the rasterization stage, the vector graphics are converted to a bitmap. The resulting bitmap is returned just as a
regular M x N x 3 or M x N x 4 matrix, which can easily be used from Quasar (e.g. for future rendering commands). The
vector graphics can also be saved to .svg, .eps, .ps or .pdf �les.

Functions overview

qvectorlayer
class

Function
name

Description

clear Removes all rendering objects from this vector layer. Use this function to update the content of a vector layer.
setpencolor Sets the current color of the pen for this vector layer. The pen a�ects all drawing operations that are strokes or curves.
setbrushcolor Sets the current brush color for this vector layer. The brush a�ects all drawing operations that �ll a certain area.
setpenwidth Sets the current pen width for this vector layer. The pen a�ects all drawing operations that are strokes or curves. Use this function

to draw thick lines.
setpendashstyle Sets the current dash style for this vector layer. The pen a�ects all drawing operations that are strokes or curves.
drawrect Draws a rectangle from point start to point end using the current pen color.
�llrect Fills a rectangle from point start to point end using the current brush color.
drawellipse Draws an ellipse using the current pen color.
�llellipse Fills an ellipse using the current brush color.
drawline Draws a line using the current pen color (see), the current pen width (see) and the current pen dash style.
drawpoly Draws a polygon using the current pen color. The polygon consists of N vertices.
�llpoly Fills a polygon using the current brush color. The polygon consists of N vertices.

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 3

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.1 1. 2D rendering 1 THE QUASAR GRAPHICS LIBRARY

qvectorlayer
class

drawcurve Draws a curve using the current pen color. The curve is speci�ed by its control points. The method used internally to draw the
curve may be implementation-dependent (e.g. a bezier curve).

pushtransform Pushes a copy of the current transform matrix for this vector layer to the stack. This function is useful when applying certain
geometric transformations that need to be undone later.

poptransform Pops one transform matrix from the stack and selects this matrix as the current transform matrix.
resettransform Resets the current transform matrix (by replacing it with an identity matrix).
rotatetransform Rotates the current coordinate axes by angle-degrees (clockwise).
scaletransform Scales the current coordinate axes by a constant.
translatetransformShifts the current coordinate axes in the horizontal and vertical direction, by performing a translation.
setdefaultfont Selects the default font for this vector layer
setfont Changes the current font for this vector layer
drawstring Draws the speci�ed text using the current font (see).
pushclippingrect Pushes the current clipping rectangle to the stack.
popclippingrect Restores the clipping rectangle from the stack.
setclippingrect Sets the current clipping rectangle. Clipping rectangles are useful for ensuring that all drawing is done inside a given rectangle

(ignoring all operations that are outside the rectangle).
drawimage Draws the speci�ed image at the given location.
drawplot Draws a plot at the speci�ed location.
show Displays the content of the vector layer in a new window.
save_eps (1) Saves the plot as an encapsulated postscript (.EPS) �le.
save_eps (2) Saves the plot as an encapsulated postscript (.EPS) �le (with size 8cm x 10cm).
save_pdf (1) Saves the plot as a PDF �le.
save_pdf (2) Saves the plot as a PDF �le (with size 8cm x 10cm).
save_ps (1) Saves the plot as a postscript �le.
save_ps (2) Saves the plot as a postscript (with size 8cm x 10cm).
save_svg Saves the plot as a scalable vector graphics (SVG) �le.
save Saves the plot as an image �le (by automatically recognizing the �le extension). Most image �le formats are supported. The

default dimensions are 8cm x 10cm, at 144 DPI.
rasterize Rasterizes the speci�ed surface (to obtain a matrix).

See the Documentation Browser in Redshift (topic User Interface / qvectorlayer) for more information.

Functionality that is currently not implemented yet, but this may be implemented in the future:

• gradient brushes (linear, gradient)
• pattern brushes
• regions
• paths

In practice, this functionality is available in Cairo, however, for OpenGL I would have to write some speci�c shaders for
these operations.

Examples

** Note: for all 2D point coordinates, the x-component is placed �rst, then the y-component! **

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 4

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.1 1. 2D rendering 1 THE QUASAR GRAPHICS LIBRARY

1. Altering an image by adding text:

img = imread("image.png")
layer = new(qvectorlayer)
layer.drawimage([0,0], img)
layer.setbrushcolor("red")
layer.drawstring("Text", [10,10], [100,20])
img = layer.rasterize(size(img))

Note that the image may be converted to 8-bit during this operation (which causes values outside the range [0,255] to
be clipped and �oating point values to be rounded).

2. Adding a vector layer to imshow

surf = new(qvectorlayer)
surf.setbrushcolor("green")
surf.drawstring("Marker", [170,170], [240,20])
surf.fillellipse([200,140],[220,160])
surf.setpencolor("red")
for k=0..2..8

surf.drawellipse([190,130]+k,[230,170]-k)
endfor

h = imshow(imread("lena_big.tif"))
h.addlayer(surf)

3. Alpha blending

In order to enable alpha-blending, it is su�cient to pass four-channel RGBA values to the functions setpencolor and
setbrushcolor :

surf = new(qvectorlayer)
surf.setpencolor([0,0,1,0.2])
surf.drawrect([80,40],[112,72])
surf.setbrushcolor([0,0,1,0.2])
surf.fillrect([120,40],[152,72])
surf.show()

The fourth color component (A) has a value between 0 and 1 where 0=transparent and 1=opaque.

To draw images with an alpha channel, it su�ces to create a four component RGBA image where the alpha channel
has values between 0 (transparent) and 255 (opaque). Then you can use the function drawimage:

surf = new(qvectorlayer)
overlay = zeros(32,32,4)
overlay[:,:,1] = 255
overlay[:,:,3] = 20
surf.drawimage([40,40],overlay)
surf.show()

4. imshow overlay

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 5

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.2 2. Plot and scatter functions 1 THE QUASAR GRAPHICS LIBRARY

An overlay for the function imshow can be created by simply catching the imshow object and calling the method
addlayer. The coordinate system for the vector layer object is initialized automatically to correspond with the coordi-
nate system of the image (i.e. the top-left corner of the image is [0, 0], the bottom-right corner is [size (img,1) , size (
img,0)]).
approach has the advantage that the vector layer is automatically rescaled when the user zooms in. The vector layer
is rendered as an overlay at the best resolution for the selected zooming level.

layer = new(qvectorlayer)
layer.setbrushcolor("red")
layer.drawstring("Lighthouse", [10,10], [100,20])
layer.setpencolor("red")
layer.drawline([10,30],[200,30])

img = imread("lighthouse.png")
h = imshow(img)
h.addlayer(layer)

5. drawing text that is rotated 90°

6. user interactivity: drawing contours

2. Plot and scatter functions

The built-in functions plot and scatter also use the 2D drawing functionality internally. It is possible to select the rendering
method using the popup menu of the plot, or using the function set_renderer :

h = scatter(x, y)
h.set_renderer("opengl")

This is particularly useful when large amounts of data are rendered. With the OpenGL renderer, displaying 100000 points
should be very smooth.

Note that in case you want to make a plotting animation (by redrawing the plot over again), it is best to create a form with
a display:

frm = form("Animated plot demo")
frm.width = 600
frm.height = 800
frm.center()

x = linspace(0,1,256)

disp = frm.add_display()

a = 0
while !frm.closed()

a += 0.01
y = sin(a) * sin(2*pi*x)
disp.plot(x, y, x, -y).set_renderer("opengl")
ylim([-1,1])
xlabel("x")

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 6

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.3 3. 3D rendering 1 THE QUASAR GRAPHICS LIBRARY

ylabel("sin(x)")
title("Animated plot")
pause(0.01)

endwhile

It is possible to draw a plot onto a vector layer. This allows plots to be drawn on top of images, videos or any user-created
content. This is done using the qvectorlayer .drawplot function.

import "imhist.q"

im = imread("lena_big.tif")

hist = imhist(im)
hist = hist / max(hist)

hold("invisible") % hides the plotting window
p = plot(hist)
print "old ticks: ", p.xtick
p.xtick = [0, 128, 256]
p.xticklabel = {"min", "medium", "max"}
print "new ticks: "
p.ytick = [0, 0.25, 0.50, 0.75, 1.0]
title("Histogram")

layer = new(qvectorlayer)
layer.drawplot([0.1,0.5],[0.8,1.0], p) % > DRAW PLOT

h = imshow(im)
h.addlayer(layer)

Note that it is necessary to make sure that the plot function does not create an additional output window (as it normally
does). This can be obtained by calling the function hold (" invisible ") with parameter " invisible ". The function drawplot has
the following signature:

function [] = qvectorlayer.drawplot(start : vec2, end : vec2, p : qplot)

where start is the left-top coordinate of the plotting rectangle, relative to the current viewport (for imshow, the viewport
[0,0]−[1,1] corresponds to the displayed image). end is the right-bottom coordinate of the plotting rectangle. Note that by
calling resettransform it is always possible to set a new coordinate system (e.g., relative to the display window rather than
the displayed image).

3. 3D rendering

The 3D vector layer class (qvectorlayer3d) can be seen as an extension of the 2D vector layer class (qvectorlayer) to three
dimensions. Where for qvectorlayer the drawing functions accept 2-D coordinates, qvectorlayer3d will accept 3-D coordinates.
The 3D rendering itself is exclusively done via OpenGL (there is no option to choose Cairo, because Cairo only supports
2D drawings). To display a 3D vector layer object, a form must be created �rst, with a display containing an opengl_renderer.
Next, the 3D vector layer object can be attached to the opengl_renderer.

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 7

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.3 3. 3D rendering 1 THE QUASAR GRAPHICS LIBRARY

frm = form("3D rendering demonstration")
frm.width = 1024
disp = frm.add_display()

layer = new(qvectorlayer3d)

... % drawing functions

renderer = disp.create_opengl_renderer()
renderer.background_color = "black"
renderer.enable_zbuffer = true
renderer.draw_backfaces = true
renderer.add(layer, "layer")

The renderer object has the type qgldisplay and has the following properties/methods:

qgldisplay class

rasterize Rasterizes the speci�ed surface (to obtain a matrix).
clear Removes all the displayed objects from this display
add Adds a display object to this container.
set Updates a display object in this container. [deprecated]
set_texture Sets the current texture that is used for rendering
framerate Gets or sets the display frame rate (in frames per second). The default is 50.
background_color Gets or sets the background color for the OpenGL display control
lights Gets the lights associated to this OpenGL display
zoom Gets or sets the zoom factor of this OpenGL display (default: 1)
pitch Gets or sets the camera pitch angle (in degrees) for this OpenGL display
yaw Gets or sets the camera yaw angle (in degrees) for this OpenGL display
roll Gets or sets the camera roll angle (in degrees) for this OpenGL display
show_coords Gets or sets whether the current camera coordinates are shown
show_toolbar Gets or sets the visibility of the toolbar
draw_backfaces Gets or sets whether the back facing triangles are drawn (disables back-face culling).
enable_zbu�er Enables/disables the z-bu�er for rendering.
position Gets or sets the camera position
projectionmtx Gets the current projection transform matrix
worldtransformmtx Gets the current world transform matrix
tooltip Sets or gets the tooltip text for this control
htmltooltip Sets or gets the tooltip text for this control
height The control height (in pixels)
width The control width (in pixels)

The function qgldisplay .add can be used to add a vector layer (either qvectorlayer or qvectorlayer3d) to the OpenGL display.
Whenever the display is rendered (during a screen refresh, or during the rasterize function), the all layers of the OpenGL
display are processed.

The typical work�ow of the 3D rendering in Quasar is then as follows:

+-------------------+ +--------------+ +----------------------+ +---------+
|new(qvectorlayer3d)| --> |qgldisplay.add| --> |call drawing functions| --> |rendering|
+-------------------+ +--------------+ +----------------------+ +---------+

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 8

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.3 3. 3D rendering 1 THE QUASAR GRAPHICS LIBRARY

As in the 2D case, the drawing functions actually have no direct e�ect. Instead, the 3D vector layer keeps a list with all
drawing commands. Once the drawing command list is �nished, this list is processed during rendering. This also means
that, when an image (in the form of a matrix) or a vertex bu�er are being used, the vector layer object keeps a reference to
the image/vertex bu�er. When the image is no longer in use, the image will be destroyed, by reference counting.

Real-time animation then becomes really simple: it su�ces to overwrite the content of the matrix/vertex bu�ers, and the
changes will be re�ected on screen. Internally, Quasar uses CUDA-OpenGL interoperability to transfer CUDA memory
blocks to OpenGL.

Note: a 2D vector layer object qvectorlayer can also be added to the OpenGL display via qgldisplay .add. This allows you to
add a 2D graphics overlay (e.g. HUD).

3D Vector layer class

The qvectorlayer3d class contains the following properties and method:

qvectorlayer3d
class

clear Removes all rendering objects from this vector layer. Use this function to update the content of a vector layer.
settexture Sets the current texture used for �lling operations.
unsettexture Unsets the current texture for �lling operations (resulting in untextured primitives in subsequent �lling operations).
setcolor Sets the current color of the pen for this vector layer. The pen a�ects all drawing operations that are strokes or curves.
setpenwidth Sets the current pen width for this vector layer. The pen a�ects all drawing operations that are strokes or curves. Use this function

to draw thick lines.
setpointsize Sets the current point size. The point size a�ects all point drawing operations.
setpendashstyleSets the current dash style for this vector layer.
drawline Draws a line using the current color, the current pen width and the current pen dash style.
drawlines Draws N lines using the current color, the current pen width and the current pen dash style.
drawlinestrip Draws a line strip (a group of connected line segments) using the current color, the current pen width and the current pen dash style.
�lltriangles Fills N triangles using the current color. Each triplet of points is treated as an independent triangle. function [] =

qvectorlayer3d.�lltriangles(p : cube)
�llindexedtrianglesFills N triangles using the current color and using the speci�ed set of indices. Each triplet of indices corresponds to an independent

triangle.function [] = qvectorlayer3d.�llindexedtriangles(points : cube, indices : cube[int])
�lltrianglestrip Fills N triangles using the current color. Each triangle is de�ned for each point presented after the two previous points. function [] =

qvectorlayer3d.�lltrianglestrip(p : cube)
�lltrianglefan Fills N triangles using the current color. Vertices 0, n-1 and n de�ne a triangle.function [] = qvectorlayer3d.�lltrianglefan(p : cube)
�llquads Fills N quads using the current color. function [] = qvectorlayer3d.�llquads(p : cube)
drawpolygon Draws a single polygon of N points using the current color, the current pen width and the current pen dash style.
�llpolygon Fills a single convex polygon of N points using the current color.function [] = qvectorlayer3d.�llpolygon(p : cube)
drawpoint Draws one single point using the current color.
drawpoints Draws N points using the current color.
drawrect Draws a rectangle using the current color.
�llrect Fills a rectangle using the current color.
drawimage Draws an image in 3D coordinates.
drawbox Draws an axis-aligned 3D box the current color.
translatetransformShifts the current coordinate axes in the horizontal and vertical direction, by performing a translation.
scaletransform Scales the current coordinate axes by a constant.
rotatetransformRotates the coordinate system by angle-degrees (clockwise) around a given vector.
multiplytransformApplies the speci�ed 4x4 matrix transform.

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 9

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.3 3. 3D rendering 1 THE QUASAR GRAPHICS LIBRARY

qvectorlayer3d
class

pushtransform Pushes a copy of the current transform matrix for this vector layer to the stack. This function is useful when applying certain
geometric transformations that need to be undone later (using the function qvectorlayer3d.poptransform.

poptransform Pops one transform matrix from the stack (pushed using qvectorlayer3d.pushtransform) and selects this matrix as the current
transform matrix.

resettransform Resets the current transform matrix (by replacing it with an identity matrix).
print Prints text in 3D at the speci�ed position, using the current color.
rasterize Rasterizes the speci�ed surface (to obtain a matrix).
enable_-
zbu�er

Enables/disables the z-bu�er for rendering.

enable_-
lighting

Enables or disables OpenGL lighting. Note: you can turn on/o� lighting at any time in between di�erent rendering commands

Alpha blending

To enable alpha blending, it su�ces to pass colors as vectors of 4 components vec4 (RGBA) to the drawing functions. The
last component will then be used as an alpha channel (values between 0 and 1), where 0 is transparent and 1 is opaque.

To draw (semi-)transparent images, you can use a similar approach by allocating a matrix with four components. In this
case, the R,G,B,A values are between 0 and 255. A=0 corresponds to transparent and A=255 to opaque.

3D vertex formats

In Quasar, it is very easy to de�ne your own vertex formats. The vertices can contain all the properties you want (e.g. po-
sition, normals, texture coordinates, color, . . .). By de�ning a vector of vertices, you obtain a vertex bu�er that can then
transparently be passed to the qvectorlayer3d class for rendering.

type vertex : class
position : vec3 % vector of length 3
normal : vec3 % vector of length 3
color : vec4 % RGBA
texcoord : vec2 % texture coordinates

endtype

type vertex_buffer : vec[vertex]

The vertex bu�er contains the vertices of the primitives in consecutive order. For example, for triangles, the length of the
vertex bu�er needs to be a multiple of 3. This way, you can draw point lists, line lists, triangle lists, quad lists etc. In case
you are not rendering primitives with textures, you can omit the texture coordinates, as in the following example.

type vertex : class
position : vec3 % vector of length 3
normal : vec3 % vector of length 3
color : vec4 % RGBA

endtype

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 10

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.4 4. 3D rendering examples 1 THE QUASAR GRAPHICS LIBRARY

Drawing indexed primitives

It is possible to identify the primitives using both an index array and a vertex bu�er. Suppose that several primitives (faces)
reuse the same vertices multiple times, by storing each vertex only once and by letting the indices point to the correct
vertices, often a lot of memory can be saved. For example, a cube can be drawn as follows:

type vertex : class
position : vec3

endtype
indices = ‘0,1,2,0,2,3, % Front

5,4,7,5,7,6, % Back
4,0,3,4,3,7, % Left
1,5,6,1,6,2, % Right
3,2,6,3,6,7, % Top
4,5,1,4,1,0’ % Bottom

layer.translatetransform([-0.5,-0.5,0])
p = vec[vertex](8)
p[0] = vertex(position:=[0,0,1])
p[1] = vertex(position:=[1,0,1])
p[2] = vertex(position:=[1,1,1])
p[3] = vertex(position:=[0,1,1])
p[4] = vertex(position:=[0,0,0])
p[5] = vertex(position:=[1,0,0])
p[6] = vertex(position:=[1,1,0])
p[7] = vertex(position:=[0,1,0])
layer.fillindexedtriangles(p, indices)
layer.translatetransform([0.5,0.5,0])

There are 36 indices and 8 vertices. Without an index array, we would have to use 36 vertices to store the cube data. Note
that OpenGL restricts the data formats for the index bu�er to vec[int], vec[uint32] and vec[uint16].

4. 3D rendering examples

Point-cloud rendering example

As an example, consider the rendering of a point cloud. To ease working with point coordinates and colors, we de�ne our
own vector3 and rgb_color classes. In this case, we only want to specify position coordinates and RGB colors to the vertices.
Therefore, the vertex de�nition only consists of a position and a color-�eld.

% Source: Samples/opengl_pointcloud.q
import "Quasar.UI.dll"

type vector3 : class
x : scalar
y : scalar
z : scalar

endtype

type rgb_color : class
x : scalar
y : scalar
z : scalar

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 11

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.4 4. 3D rendering examples 1 THE QUASAR GRAPHICS LIBRARY

endtype

type vertex : class
position : vector3
color : rgb_color

endtype

function [] = update_pointcloud(v : vec[vertex], A : mat, t : scalar)
% Calculate the coordinates based on the current time-index
coord = 12*abs(A).^(3+2*sin(t)).*sign(A)

% Fill the vertex buffer with the vertices
#pragma force_parallel
for k = 0..numel(v)-1

r = sum(abs(coord[k,0..2]))
v[k] = vertex(position:=vector3(x:=coord[k,0], y:=coord[k,1], z:=coord[k,2]),

color:=rgb_color(x:=r, y:=0.0, z:=1-r))
endfor

endfunction

function [] = main()
frm = form("OpenGL point-cloud visualization demo")
frm.width = 800 % Sets the width of the form
disp = frm.add_display() % Attaches a display object
disp.sync_framerate(40) % Render at 40 FPS
renderer = disp.create_opengl_renderer() % Creates the OpenGL 3D renderer
layer = new(qvectorlayer3d) % Creates a 3D vector layer
renderer.add(layer, "layer") % Adds the vector layer to the renderer
frm.show() % Displays the form (otherwise the form remains hidden)

% Generate a set of random coordinates
A = rand(1000000,3)-0.5
v = vec[vertex](size(A,0)) % Initializes the vertex buffer
layer.drawpoints(v) % Draws the vertices onto the 3D vector layer
% Note that the vertices have not been initialized at this stage.
t = 0.0
while !frm.closed()

t += 0.01 % Time step
update_pointcloud(v, A, t) % Updates the point cloud with new vertex data
pause(10)

endwhile
endfunction

Lines, images, alpha blending, rasterization

This example shows the use of images and alpha blending for 3D rendering. Once the 3D vector layer is ready, the complete
layer is rasterized, resulting in a RGB color image and a depth image.

import "Quasar.UI.dll"

frm = form("Surface plot")
frm.width = 800
disp = frm.add_display()
disp.width = 1024
disp.height = 768

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 12

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

1.4 4. 3D rendering examples 1 THE QUASAR GRAPHICS LIBRARY

% Loads a test image - assigns an alpha channel
im = 128*ones(512,512,4) % Set alpha channel to 128
im[:,:,0..2] = imread("lena_big.tif")

layer = new(qvectorlayer3d)
layer.scaletransform([0.5,0.5,0.5])
layer.drawbox([-1,-1,-1],[1,1,1])
layer.enable_zbuffer = false % Disable z-buffer for transparent rendering
layer.setcolor("red") % The colors act as a color filter. It is also possible to specify an alpha

% here. This alpha channel would be used for a second multiplication.
layer.drawimage([0.5,0,0],[0,1,0],[0,0,-1],im)
layer.setcolor("green")
layer.drawimage([0,0.5,0],[1,0,0],[0,0,-1],im)
layer.setcolor("blue")
layer.drawimage([0,0,0.5],[1,0,0],[0,1,0],im)
layer.setcolor("yellow")
layer.drawimage([0,0,-0.5],[1,0,0],[0,1,0],im)
layer.setcolor("cyan")
layer.drawimage([0,-0.5,0],[1,0,0],[0,0,-1],im)
layer.setcolor([1,0,1,0.5]) % magenta
layer.fillrect([-0.5,0,0],[0,1,0],[0,0,-1])
layer.enable_zbuffer = true % Enables the Z-buffer again

renderer = disp.create_opengl_renderer()
renderer.background_color = "white"
renderer.enable_zbuffer = true
renderer.draw_backfaces = true
renderer.add(layer, "layer")
renderer.pitch = 340

colorimg = zeros(480,640,4)
depthimg = zeros(480,640)
layer.rasterize(colorimg, depthimg)
imshow(colorimg)
imshow(depthimg)

frm.show()
frm.wait()

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 13

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342

	1 The Quasar Graphics Library
	1.1 1. 2D rendering
	1.1.1 Functions overview
	1.1.2 Examples

	1.2 2. Plot and scatter functions
	1.3 3. 3D rendering
	1.3.1 3D Vector layer class
	1.3.2 Alpha blending
	1.3.3 3D vertex formats
	1.3.4 Drawing indexed primitives

	1.4 4. 3D rendering examples
	1.4.1 Point-cloud rendering example
	1.4.2 Lines, images, alpha blending, rasterization

