
Quasar: installation guide

Bart Goossens

October 30, 2023

Contents
1 Prerequisites 2

2 Windows 2

3 Linux 3
3.1 Supported platforms & distributions . 3
3.2 Compiler support . 3
3.3 Prerequisites . 3
3.4 Automatic installation . 3
3.5 Manual installation steps . 3

4 Mac OS X 5

5 Known issues 7
5.1 Windows Remote desktop connection . 7
5.2 Windows: problems starting Quasar / Redshift . 7
5.3 Windows: laptops with NVidia Optimus . 7
5.4 Linux/MAC OS terminal server connection (ssh) . 7
5.5 Linux: Window managers . 7
5.6 MAC OS X: OpenGL / imshow does not work . 7
5.7 Multiple NVidia GPUs: SLI mode on/off . 8

6 Other issues 8

1

1 Prerequisites
• GPU - to take advantage of the GPU capabilities of Quasar, it is required to have a (recent) NVidia GPU

with compute architecture of at least 1.3. See https://developer.nvidia.com/cuda-gpus to check whether
your device is supported. In case no supported GPU is present, the Quasar programs can only be compiled
and run using the CPU computation engine.

• GPU - NVidia CUDA 4.2 (or higher) is required. Recommended is to install CUDA 7.5. Download the
CUDA package from here: https://developer.nvidia.com/cuda-downloads (or use the google search terms
“download cuda”).

• Runtime - for its special dynamic code generation abilities and to be platform-independent, Quasar requires
the .Net Framework 4.0 (or higher) to be installed. The latest version is 4.6. On Windows PC’s the .Net
Framework is shipped with Windows, so nothing needs to be done. On Linux/MAC, MONO (v2.0 or later)
is required (see http://www.mono-project.com).

• Quasar Redshift (IDE for Quasar) requires GTK 2.24 to be installed. Under windows, you need to use a
64-bit version of GtkSharp (send an email to quasar@telin.ugent.be, currently this version is not available
online).

• Warning : do not install GTK 3.xx, because GTK# is not compatible with this version of GTK.

2 Windows
Update: there is a 64-bit windows installer available. We recommend using the Windows installer, rather than
the manual instruction steps below.

1. Make sure whether you are running a 32-bit version of Windows, or a 64-bit version of Windows. Check if
you installed the 32-bit driver version of CUDA, or the 64-bit driver version.

2. If necessary, copy the files from the directories OS_Runtimes\32bit_Windows to the directory of Quasar.exe.
Note: on some computers this step is not needed - the Quasar runtime automatically detects whether it is
run in 32-bit mode or 64-bit mode and selects the appriopriate binary directory.

3. In the root directory of the installation package is now the 32-bit version of Quasar.exe (this version is up to
2 times faster than the 64-bit version); in case you would like to run the 64-bit version of Quasar, you can
find this executable in the directory OS_Runtimes\64bit_Windows.

4. Install a C/C++ compiler with OpenMP support. Currently, the following compilers are supported:

• Intel C/C++ v.11
• Microsoft Visual C/C++ v.9.0 (VS 2008)
• Microsoft Visual C/C++ v.10.0 (VS 2010)
• Microsoft Visual C/C++ v.11.0 (VS 2012)
• Microsoft Visual C/C++ v.12.0 (VS 2013)
• MingW GCC
• Clang 2.5 or newer

The compiler is selected according to the above order. For example, if both Visual C++ as Intel C++ are
available, the Intel compiler will be used.
If your favorite compiler is not listed here, don’t panic. In that case, modify the batch file cc_script.bat to
include your compiler (and send a copy of the modified cc_script.bat to quasar@telin.ugent.be). Make
sure that you include entries for both 32-/64-bit.

5. Optionally, Quasar can be natively pre-compiled, using the ngen (Native Image Generator) tool. This may
increase the compilation speed of Quasar programs by 30-40%. Run the following command for your command
prompt:

c : \Windows\Microso f t .NET\Framework\v4 . 0 . 30319\ ngen . exe i n s t a l l Quasar . exe

2

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-downloads
http://www.mono-project.com
quasar@telin.ugent.be

3 Linux

3.1 Supported platforms & distributions
Many platforms are supported, but not all of them have been tested. Extensively tested platforms include x86
and x86-64; although Quasar also works on ARM (note: for ARM with hardware floating point support, a recent
version of MONO is required). Other platforms that MONO supports are SPARC, PowerPC, IA64 Itanium2 and
MIPS. Because the back-end code generator relies on gcc and because the compiler options are more or less the
same for each platform, Quasar should work relatively flawlessly on all of these platforms. If not, you may post a
bug report.

Quasar should run well on all major linux distributions. The distributions on which we test the most are Ubuntu,
Xubuntu and Linux Mint.

3.2 Compiler support
The linux version of Quasar currently only supports GCC and Clang for native C/C++ compilation. However,
other compilers can easily be added by modifying the cc_script.sh. If you do so, send the updated cc_script.sh
to quasar@telin.ugent.be.

3.3 Prerequisites
The following software needs to be installed first:

• GCC (should be installed on most linux distributions by default)

• GTK 2.xx (normally installed by default, e.g., package libgtk2.0-0)

• MONO (look for the package mono-complete in the synaptic package manager)

• GTK# (look for the package gtk-sharp2 in the synaptic package manager)

3.4 Automatic installation
Dirk made a linux installation script in the main Quasar folder with name “install.sh”. Simply run the script from
the terminal (./install.sh), Quasar should be installed in /usr/local or {your_home}/local. Furthermore, a
taskbar icon is created for Quasar.

3.5 Manual installation steps
Important: some changes to ~/.bashrc and ~/.bash_profile are required, this is to get CUDA running:

1. add the following text add the bottom of ~/.bashrc

source / e t c / p r o f i l e
. / usr / l o c a l /cuda/ p r o f i l e . sh
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/ usr / l o c a l /cuda/ l i b 6 4 :$LD_LIBRARY_PATH

2. put the following text in ~/.bash_profile

source ~/. bashrc

3. test whether nvcc runs correctly:

• Open a new terminal

• Enter "nvcc --version"

• If correct, the output should be as follows:

Copyright (c) 2005−2010 NVIDIA Corporat ion
Bu i l t on Mon_Jun__7_18: 5 6 : 3 1_PDT_2010
Cuda compi la t ion too l s , r e l e a s e 3 . 1 , V0 . 2 . 1 221

3

4. Adjust file permissions of a couple of files (important!)

cd ~/Quasar [or your own Quasar d i r e c t o r y]

chmod +x ∗ cc_scr ip t . sh && chmod +x Quasar . exe

Note: the permissions of the *cc_script.sh files are updated automatically by Quasar, if necessary.

5. Run and check if quasar is working properly

. / Quasar . exe −ve r s i on

The output should be as follows:

−−
Quasar 1 . 0 . 0 . 0 − bu i ld date 8/13/2012 3 : 3 2 : 2 9 PM − 64−b i t
Copyright © Bart Goossens 2011−2012
−−
OS: Unix 2 . 6 . 3 2 . 3 0
CPU − unknown proc e s s o r [4 co r e s]
CUDA (d r i v e r v e r s i on : 3 . 1 , runtime ve r s i on : 3 . 1 , 32−b i t)
GPU − GeForce GTX 460 [Mem: 1023 Mb, Compute cap . : 2 . 1]
Clock ra t e : 1430000 Hz
Can map host memory : 1
Supports concurrent k e rn e l s : 1
In t eg ra t ed with CPU memory : 0

6. Check the output of the previous step if CUDA is listed. If there is no mentioning of CUDA, then the CUDA
runtime is not found. Then use the test tools to check if CUDA is installed:

• Enter cd Tools; make to recompile the test utilities.

• 32-bit linux: chmod +x Tools/test_cuda32 && ./test_cuda32

• 64-bit linux: chmod +x Tools/test_cuda64 && ./test_cuda64

7. If CUDA is working correctly, the output should be as follows:

============================
CUDA Test ing program
July 2012 , Bart Goossens .
============================
Number o f CUDA dev i c e s : 1

CUDA Device #0
Major r e v i s i o n number : 2
Minor r e v i s i o n number : 1
Name : GeForce GTX 460
Total g l oba l memory : 1072889856
Total shared memory per block : 49152
Total r e g i s t e r s per block : 32768
Warp s i z e : 32
Maximum memory p i t ch : 2147483647
Maximum threads per b lock : 1024
Maximum dimension 0 o f b lock : 1024
Maximum dimension 1 o f b lock : 1024
Maximum dimension 2 o f b lock : 64
Maximum dimension 0 o f g r id : 65535
Maximum dimension 1 o f g r id : 65535
Maximum dimension 2 o f g r id : 1
Clock ra t e : 1430000

4

Total constant memory : 65536
Texture al ignment : 512
Concurrent copy and execut ion : Yes
Number o f mu l t i p r o c e s s o r s : 7
Kernel execut ion timeout : Yes

S i z e o f host po in t e r : 8 bytes
S i z e o f dev i c e po in t e r : 4 bytes
S i z e o f cu f f tHand le : 4 bytes
S i z e o f CUmodule : 8 bytes
S i z e o f CUfunction : 8 bytes
Test ing cuFFT . . .
cuFFT mean abs e r r o r : 1 .91483 e−05a

8. TROUBLESHOOTING: if cuda is not working, check if the LD_LIBRARY_PATH is set correctly:

echo $LD_LIBRARY_PATH

The output should contain /usr/local/cuda/lib64 (64-bit linux) or /usr/local/cuda/lib (32-bit linux).
Then check if the CUDA runtime libraries are installed correctly:

l o c a t e cudart . so
l o c a t e c u f f t . so

If CUDA is installed correctly, these libraries should be in the same folder as the LD_LIBRARY_PATH.

9. Look at the output of test_cuda32 or test_cuda64: Check the line "Size of device pointer: 4 bytes". If the
size of the device pointer is 4 bytes, then the GPU needs to be run in 32-bit mode. Therefore: execute the
following command

cp GPU_Runtimes/32bit_GPU/CUDA.NET. d l l .

On the other hand, if the size of the device pointer is 8 bytes, then 64-bit GPU mode is required.

cp GPU_Runtimes/64bit_GPU/CUDA.NET. d l l .

10. Only if you are not running Quasar.exe from the folder in which Quasar is installed (e.g. using external gedit
plugins): adjust Quasar.config.xml, and set NVCC_PATH and CC_PATH to the full directory of Quasar,
e.g.

<s e t t i n g name="NVCC_PATH">
<value>~/Quasar/ nvcc_scr ipt . bat</value>

</se t t i ng >
<s e t t i n g name="CC_PATH">

<value>~/Quasar/ cc_scr ip t . bat</value>
</se t t i ng >

Note that Quasar will automatically select the correct extension (.bat for windows, .sh for linux/unix, .osx.sh
for MAC OS).

4 Mac OS X
Tested on: Mac OS X 10.6.8 and 10.11 (thanks to Bert Vandeghinste and Hiep Luong!)

What is needed as extra, and is not installed by default:

• Mono JIT compiler, downloadable from www.mono-project.com (tested with version 2.10.9)

• GTKSharp for MAC OS X

• GCC (g++) version 4.5.0 (or higher).

5

www.mono-project.com

Installation steps:

• To install the prerequisites, the easiest option is to install Xamarin Studio (http://xamarin.com/download).

• Create the shells scripts ./quasar and ./redshift in the folder Quasar/NewestVersion:

./ quasar :

#!/bin / sh
export DYLD_FALLBACK_LIBRARY_PATH="/Library /Frameworks/Mono . framework/Vers ions /Current / l i b :$DYLD_FALLBACK_LIBRARY_PATH:/ usr / l i b "
exec / Library /Frameworks/Mono . framework/Vers ions /Current /bin /mono Quasar . exe $@

./ r e d s h i f t

#!/bin / sh
export DYLD_FALLBACK_LIBRARY_PATH="/Library /Frameworks/Mono . framework/Vers ions /Current / l i b :$DYLD_FALLBACK_LIBRARY_PATH:/ usr / l i b "
exec / Library /Frameworks/Mono . framework/Vers ions /Current /bin /mono Quasar . Redsh i f t . exe $@

• Make sure to give the shell scripts executable permissions, using:

chmod +x ./ quasar
chmod +x ./ r e d s h i f t

• run "./quasar -version". The output should look like:

. / quasar −ve r s i on
−−
Quasar 1 . 0 . 0 . 0 − bu i ld date 11/20/2012 1 : 2 9 : 1 2 PM − 32−b i t
Copyright © Bart Goossens 2011−2012
−−
OS: MacOS − Unix 1 0 . 8 . 0 . 0
CPU − unknown proc e s s o r [2 co r e s]
CUDA (d r i v e r v e r s i on : 4 . 2 , runtime ve r s i on : 4 . 2 , 32−b i t)
GPU #0 − GeForce 9400M [Mem: 253 Mb, Compute cap . : 1 . 1 , 2 co r e s]
Clock ra t e : 1100000 Hz
Can map host memory : 1
Supports concurrent k e rn e l s : 0
In t eg ra t ed with CPU memory : 1

• If this succeeds (you get the version info), you can just go ahead and run the Samples! For example:

. / quasar −debug Samples/imshow . q

• If imshow.q works, this doesn’t mean more advanced (compilable) samples will work.

6

http://xamarin.com/download

5 Known issues

5.1 Windows Remote desktop connection
On Windows, Quasar cannot run using the GPU computation engine, when the GPU is the primary GPU of the
system. Instead, either:

• Run Quasar using the CPU engine (-cpu command line option).

• Set up a VNC server on the windows machine, and connect through a VNC client.

A better solution is to install Microsoft TeamViewer Host on the server (with the GPUs), and to run Microsoft
TeamViewer on the client. Although Microsoft TeamViewer uses standard HTTP/SSL ports, it is also possible
to use SSH tunneling. The TeamViewer option works correctly in combination with OpenGL and is hence the
recommended solution for using Quasar/Quasar Redshift via a remote connection.

5.2 Windows: problems starting Quasar / Redshift
1. When starting Quasar.Redshift.exe (or Quasar.Spectroscope.exe) leads to the error message:

An unhandled except ion o f type ’ System . IO . FileNotFoundException ’
occurred in Unknown Module . Addi t iona l in fo rmat ion : Could not
load f i l e or assembly ’ g l ib−sharp , Vers ion =2 .12 . 0 . 0 , Culture=neutra l ,
PublicKeyToken=35e10195dab3c99f ’ or one o f i t s dependenc ies .
The system cannot f i nd the f i l e s p e c i f i e d .

You can solve the problem by copying the DLLs from the folder NewestVersion\OS_Runtimes\32bit_Windows
(note: not 64bit_Windows) to NewestVersion\. If this does not work for you, inspect the file “error.log” which
has additional error information. You can send this file to me.

5.3 Windows: laptops with NVidia Optimus
Some display functions may not work by default on laptops with NVidia Optimus (i.e. laptops that both have an
Intel HD Graphics GPU and an NVidia GPU). The solution is to create an application profile with the NVidia
Control Panel for Quasar.exe and Quasar.Redshift.exe (and optionally Quasar.Spectroscope.exe). For “select
the preferred graphics processor for this program”, choose “High-performance NVIDIA processor”.

5.4 Linux/MAC OS terminal server connection (ssh)
When using plots or forms, please ensure that X-window forwarding is enabled. This can be done as follows:

ssh −X [user@computername]

Quasar attempts to detect terminal server sessions. In this case, OpenGL interoperability with CUDA (which
enables visualization directly from GPU memory, instead of copying data back to the CPU) cannot be used. By
default, the OpenGL functionality will be disabled. However, some cases have been reported in which the terminal
server session detection fails. To solve this problem, OpenGL functions can be disabled manually, by passing the
-nogl command line option to Quasar).

5.5 Linux: Window managers
Some window managers with display effects (hence using the GPU), may cause CUDA to malfunction. Quasar
programs generate failure messages such as “CufftSetupFailed” or hang during startup. The solution is then simply
to use another window manager (for example, GNOME classic without effects).

5.6 MAC OS X: OpenGL / imshow does not work
It may be necessary to disable OpenGL. Edit Quasar.Runtime.config.xml and set the value for key “USE_OPENGL”
to False.

7

5.7 Multiple NVidia GPUs: SLI mode on/off
It is recommended to turn off the SLI mode in the NVidia driver, so that Quasar can use the memories of both
GPUs in an efficient manner.

6 Other issues
Contact us at quasar@telin.ugent.be.

Happy Quasar’ing!

8

quasar@telin.ugent.be

	1 Prerequisites
	2 Windows
	3 Linux
	3.1 Supported platforms & distributions
	3.2 Compiler support
	3.3 Prerequisites
	3.4 Automatic installation
	3.5 Manual installation steps

	4 Mac OS X
	5 Known issues
	5.1 Windows Remote desktop connection
	5.2 Windows: problems starting Quasar / Redshift
	5.3 Windows: laptops with NVidia Optimus
	5.4 Linux/MAC OS terminal server connection (ssh)
	5.5 Linux: Window managers
	5.6 MAC OS X: OpenGL / imshow does not work
	5.7 Multiple NVidia GPUs: SLI mode on/off

	6 Other issues

