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1 INTRODUCTION

Introduction

Algorithmic di�erentiation (AD, also known as automatic di�erentiation) refers to the ability of automatically deriving an
algorithm that computes a (partial) derivative of a given function that is also speci�ed by an algorithm. Therefore, AD
is a transformation in the space of algorithms. AD has several advantages, such as not having to deal with the numerical
inaccuracies of numerical di�erentiation (∂f∂x ≈ f(x+1)−f(x)) and the expansive expressions of symbolic di�erentiations.
AD consists of representing the input algorithm as a chain of input-output operations to which the chain rule can be applied.
As such, AD can handle control structures such as loops and branches (at least, as long as the involved conditions do not
depend on the derivative variables). Suppose we have three operations f , g and h, then the input algorithm is represented
by the function compositions y = f(g(h(x))). Applying the chain rule yields

dy

dx
=

dy

dw2

dw2

dw1

dw1

dx

The main advantage of AD is there is no longer a need to manually write functions that implement the derivative of a cost
function (which is often a tedious and error-prone process, especially for higher-order functions). Additionally, the AD
framework can leverage on the parallelization facilities of the compiler.

There are two modes of AD: forward accumulation, in which the chain rule is traversed from inside to outside (just like
when calculating the derivative symbolically):

dwi

dx
=

dwi

dwi−1

dwi−1

dx
, i = 1, 2, 3 with w3 = y

and backward accumulation (also called reverse accumulation) which traverses the chain rule from outside to inside:

dy

dwi
=

dy

dwi+1

dwi+1

dw
, i = 0, 1, 2 with w0 = x

Both modes give the same result but they have di�erent characteristics when applied to multivariate functions versus vector
functions. In particular, the application to multivariate functions is generally more e�cient using backward di�erentiation
while forward di�erentiation is more suited for univariate functions or vector-valued functions.

In backward accumulation, intermediate values of the forward computation tend to be out-of-scope at the moment that the
backward accumulation is applied. Therefore it is necessary to store these intermediate values in memory. In sequential
backward AD, intermediate values are stored in a so-called tape drive, which is “played back” in reverse during the di�er-
entiation. Quasar implements parallelized versions of forward AD and backward AD: * �rst, the algorithm is analyzed and
the dependencies between the variables are being determined * next, forward or backward AD is applied to obtain a new
algorithm * the resulting algorithm is parallelized and further optimized using target-speci�c code transformations

With this approach, the parallelism inherent in the initial algorithm is also present in the derived algorithm. The tape drive
is implemented by de�ning extra variables that store the intermediate value(s), which can be vectors, matrices or higher
dimensional arrays. This is in contrast to symbolic di�erentiation, for which the function to be derived is expressed in one
expression, without using any intermediate values. Symbolic di�erentiation can therefore lead to expansive expressions.

Additionally, automatic adjoint calculation is similar to backward di�erentiation, with the main di�erence that an algorithm
is derived to compute the adjoint of a linear operation. Linear operations can be expressed as matrix-vector product (e.g.,
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1.1 An illustrative example 1 INTRODUCTION

y = Ax) and the adjoint operation is then simply x = ATy (or x = AHy in cause of complex-valued data). Here an
algorithm is speci�ed to calculate A, so that the matrix itself no longer needs to be densely stored in the computer memory.
In fact, this easily allows to build matrices of millions of rows by millions of columns. Once the adjoint of the algorithm is
determined, sparse matrix solvers such as the method of conjugate gradients can be used to invert A.

An illustrative example

To illustrate the di�erent di�erentiation modes, consider symbolic di�erentiation for the product a1a2a3:

∂

∂x
(a1a2a3) =

∂a1
∂x

a2a3 + a1
∂a2
∂x

a2a3 + a1a2
∂a3
∂x

The resulting expression has three terms with each three factors (in total 6 multiplications and 2 additions). For multiplication
of n factors, the resulting number of factors becomes quadratic after derivation (n2).

Forward mode AD avoids this problem by introducing temporary variables to store the intermediate results of the calculation.
In forward mode:

t1 = a1a2, t2 = t1a3

∂t1
∂x

=
∂a1
∂x

a2 + a1
∂a2
∂x

∂t2
∂x

=
∂t1
∂x

a3 + t1
∂a3
∂x

which results in 5 multiplications and 2 additions (saves one multiplication). However, the bigger the expression is, the more
can be gained by reusing computations such as in the above example.

Backward mode AD splits up the calculations as follows (here ẋ denotes a derivative with respect to the output variable, t2):

t1 = a1a2, t2 = t1a3 (forward step)

ṫ2 = 1 (seed value)

ṫ1 = a3ṫ2 (reverse step 1)

ẋ = t1ṫ2
∂a3
∂x

a3 + ṫ1a2
∂a1
∂x

+ ṫ1a1
∂a2
∂x

(reverse step 2)

The backward mode AD �rst performs the forward calculation to obtain a1a2a3 then calculates the derivatives of the tem-
porary variables with respect to t2 in a reversed manner. The variable ẋ then holds the desired result. In this example, the
backward mode AD brings little advantage in computing ∂

∂x (a1a2a3). However, suppose that x is a vector, then through ẋ

we directly obtain a vector containing all of the partial derivatives. The forward mode analyzes how the output variables
change as function of the input variables, while the backward mode works the other way around, making it more suitable
to be applied when the output is scalar (or a vector of a small dimension) and when the input is a large vector. As in the
above example, the vector with the partial derivative is obtained at once.

For the backward mode to work, intermediate values t1 and t2 need to be stored for later use. During the forward calculation,
it may occur that variables are overwritten (for example, due to inplace operations such as +=, ∗=, . . . ). When this happens,
previous values need to be stored for later retrieval. In sequential AD algorithms, this is done using a linear array called a
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1.1 An illustrative example 1 INTRODUCTION

tape drive, which can during the reverse step be played in reverse to obtain the right intermediate values at the right time.
For parallel AD implementations, the parallelism is inherent in the output vector (i.e., the derivative can be calculated w.r.t.
each output variable in parallel), although this requires special care because a fully sequential tape drive can no longer be
used.
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2 ALGORITHMIC DIFFERENTIATION IN QUASAR

Algorithmic di�erentiation in Quasar

A Quasar function has K inputs, of which each input can be a scalar value, a vector/matrix/higher dimensional array, a
cell array or even an object. The function has L outputs which can have a scalar type, a vector type etc. To simplify the
AD framework, Quasar functions are restricted to have a single output parameter, without loss of generality (the output
parameter can still be a cell vector, which is equivalent to returning each component individually).

For convenience, it is also possible to calculate the derivative with respect to groups of parameters (for example, the deriva-
tive with respect to a variable of type vec[mat](2) , which represents a vector containing two matrices). Such derivatives
needs to be interpreted as a derivative with respect to one vector that contains all the individual components of the two
matrices. For example, the cost function of a neural network may contain several sets of parameters (e.g., one set for every
layer). The parameter grouping (either using cell vectors/matrices or using classes) allows the derivative of the cost function
to be calculated with respect to all parameters of interest. We can therefore say that the function f constitutes a mapping
from RM → RN (or in case of complex-valued functions, CM → CN ). Summarizing: Mathemetically, we are working with
vectors, while in the programming language we are using the available data structures to represent the data in an organized
manner that is convenient to work with.

In the AD framework, there are di�erent building blocks:

1. The derivative may be calculated with respect to a scalar value ri ∈ R. Therefore, the derivative ∂f
∂ri

(x) is a mapping
from RM → RN (i.e., the derivative of each of the scalar output variables with respect to one of the input variables,
evaluated at a certain point in the input space). We will call this standard method.

2. The derivative may be calculated with respect to a vector s ∈ RJ with J ≤ M . In this case, the derivative[
∂f
∂s1

(x) · · · ∂f
∂sJ

(x)
]

(also called Jacobi matrix) is a mapping from RM → RMN (the derivative of each of the scalar
output variables to each of the input variables). The dimensionality easily becomes intractible, especially of the input
and output space already have high dimensionality (such as for images). Luckily, for many optimization algorithms,
the Jacobi matrix does not need to be evaluated and stored in memory, instead many algorithms use the product of
the transposed Jacobi matrix and a vector

[
∂f
∂s1

(x) · · · ∂f
∂sJ

(x)
]T
·w (also called tangent method).

3. Furthermore, in case f is a linear function, the adjoint f? is of interest (called adjoint method). When the framework
can determine that a function is linear, the adjoint may be used instead of the derivative, leading to a slightly more
e�cient implementation (in particular, the AD framework uses the following relationship: ∂

∂x (Ax,x) = ATx.

Using these building blocks, it is possible to de�ne and calculate higher order derivatives (e.g., Hessian). The algorithmic
di�erentiation library in Quasar (Quasar.CompMath.dll) de�nes the following meta functions:

Meta-function Method

$di� ( f (x) , x) Standard (automatic mode)
$di� ( f (x) , x , "forward") Standard (forward mode)
$di� ( f (x) , x , "backward") Standard (backward mode)
$di�mul ( f (x) , x , w) Tangent
$adjoint ( f (x) , x) Adjoint
$hessian ( f (x) , x) Hessian of a scalar function
$islinear ( f (x) , x) Returns true if f is a linear function in x, otherwise false
$isa�ne ( f (x) ,x) Returns true if f is an a�ne function in x, otherwise false

$unapply(f (x) , x) Converts a function call to a lambda expression x → f(x)
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2.1 Example: Total Variation minimization 2 ALGORITHMIC DIFFERENTIATION IN QUASAR

These functions are evaluated at compile-time and automatically generate code which can be inspected using the code
workbench window in Redshift. The result of the evaluation can be used as if it was a regular function (i.e., evaluated or
stored in a variable).

For derivatives of functions with respect to scalar values, forward mode AD is used, while for derivatives with respect to
vectors or matrices, backward mode AD is used. It is known that for vector-valued functions, the optimal calculation of the
derivative is best done using a combination of both forward and backward mode AD. Being an NP-hard problem, this is
currently not (yet) supported and the backward mode is used instead.

Important is that the argument is speci�ed each time (e.g., $di� ( f (x) , x) and not $di� ( f , x). This may cause a problem
when x is a variable that is non-existing in the outer context. Here the solution is to de�ne the derivative within a lambda
function (x : cube) −> $di� ( f (x) , x).

The function $unapply(f (x) , x) performs the same as the explicit lambda expression x −> f(x), however, there is a crucial
di�erence: $unapply() takes over the type of x in the local context. This allows di�erentiation to proceed on the new lambda
expression. It is therefore common to see expressions like:

f_deriv = $unapply($diff(f(x), x), x)

To enable e�cient code generation, the AD compiler requires the parameter types of the functions being di�erentiated, to
be known at compile-time. An error will be generated is a parameter type is not speci�ed.

The functions $islinear and $isa�ne symbolically check linearity and a�nity in a rather naive way. The check may give
a false negative result (for example, due to the use of mathematical identities unknown to the compiler). The functions are
mostly useful for performance optimization purposes (in which the result of the meta-function only a�ects the computation
time).

Example: Total Variation minimization

The total variation cost function can be calculated as follows:

function C = total_variation_costfunc(g : mat, b : mat, lambda : scalar)
C = 0.0
for m=0..size(g,0)-1

for n=0..size(g,1)-1
C += (g[m,n] - b[m,n]).^2 % data fidelity
C += lambda*abs(g[m,n-1] - g[m,n]) % horizontal partial derivative
C += lambda*abs(g[m-1,n] - g[m,n]) % vertical partial derivative

endfor
endfor

endfunction

Here, we use simple loops without vector or matrix expressions, because then the AD framework can easily handle the
function. For parallelization, we rely on the automatic loop parallelizer (with parallel reduction recognition).

Calculating the derivative w.r.t. g using the forward mode results in:
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> $diff(total_variation_costfunc(g,b,lambda),g,"forward")

function C_deriv = total_variation_costfunc_deriv(g : mat, b : mat, lambda : scalar)
C_deriv = 0.0
for M=0..size(g,0)-1

for N=0..size(g,1)-1
for m=0..size(g,0)-1

for n=0..size(g,1)-1
C_deriv += 2*(g[m,n] - b[m,n]) * delta(m-M) * delta(n-N)
C += lambda*sign(g[m,n-1] - g[m,n]) * delta(m-M) * (delta(n-1-N)-delta(n-N))
C += lambda*sign(g[m-1,n] - g[m,n]) * delta(n-N) * (delta(m-1-M)-delta(n-1-N))

endfor
endfor

endfor
endfor

endfunction

Note that the derivative calculation now contains 4 loops instead of 2, and the inner loops contain a lot of Dirac delta
functions (which only give a non-zero response when their argument is zero). The number of loops can be reduced by using
code analysis techniques, however this is not trivial and not guaranteed to work under all circumstances, resulting in an
algorithm of complexity O(N4). Instead, the backward mode derivative directly gives a calculation procedure employing
only two loops (with complexity O(N2), the same as the function that is di�erentiated):

> $diff(total_variation_costfunc(g,b,lambda),g,"backward")

function g_deriv:mat=total_variation_costfunc_deriv(g:mat,b:mat,lambda:scalar)
g_deriv=zeros(size(g))
for m=0..size(g,0)-1

for n=0..size(g,1)-1
g_deriv[(m-1),n]+= sign((g[(m-1),n]-g[m,n])) * lambda
g_deriv[m,n] += -sign((g[(m-1),n]-g[m,n])) * lambda
g_deriv[m,(n-1)]+= sign((g[m,(n-1)]-g[m,n])) * lambda
g_deriv[m,n] += -sign((g[m,(n-1)]-g[m,n])) * lambda
g_deriv[m,n] += g[m,n] * 2 - b[m,n] * 2

endfor
endfor

endfunction

In general, by backward mode AD the algorithmic complexity of the input function is preserved (up to constant factors). The
resulting loops can also easily be parallelized. In Quasar, the addition += is implemented using an atomic update, the parallel
loops are therefore free of data races. After AD, the generated function is further compiled using the Quasar compiler,
not only performing automatic parallelization, but also allowing target-speci�c optimizations to be added. For example, the
atomic operation may be performed in shared memory instead of global memory, signi�cantly improving the performance of
the generated kernel. Additionally, atomic operations on scalar variables or matrices with constant indices are automatically
translated into parallel reduction algorithms.
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3 AD FRAMEWORK OVERVIEW

AD framework overview

In the next sections we give an overview of the features supported by the AD framework.

Type restrictions

It is important that all parameter types (except return parameter types) of functions to be di�erentiated are statically typed.
Without type information, the AD framework cannot know whether a variable is a vector, a matrix or a scalar value.

Currently, the derivatives to be calculated need to be scalar values or vectors of scalar values. Calculating the derivative
with respect to an integer value is not allowed (in this case numerical di�erentiation is recommended).

Complex-valued scalar values ( cscalar ) can be used but have not been tested thoroughly (it is best to check if the generated
derivative functions are correct).

It is also possible to take derivatives with respect to cell vectors/matrices (grouping individual parameters) or with respect
to objects. For example

type Parameters : dynamic class
w1 : cube{4}
w2 : mat
w3 : cube

endtype

function C = cost_function(p : Parameters)
...

endfunction

This way, the derivative of cost_function with respect to all parameters can be obtained:

cost_function_deriv = (p : Parameters) -> $diff(cost_function(p), p)

Then cost_function_deriv can be used as a regular Quasar function and will calculate the gradient of cost_function in point p.

Suppose we are using a block-coordinate descent method in which we want to calculate a partial derivative (e.g., with respect
to w1). In this case, it is best to de�ne a function to split the parameters:

function C = cost_function_split(w1 : cube{4}, w2 : mat, w3 : cube)
cost_function_split = cost_function(Parameters(w1:=w1, w2:=w2, w3:=w3))

endfunction

cost_function_deriv_w1 = (p : Parameters) -> $diff(cost_function_split(p.w1,p.w2,p.w3), p.w1)

Then a gradient step on the w1 parameter can easily be calculated:

p.w1 += step_size * cost_function_deriv_w1

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 9

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342


3.2 Modularity and device functions 3 AD FRAMEWORK OVERVIEW

Modularity and device functions

The AD framework supports modular programming and it is encouraged to use this approach such that the functionality
can be separated in small functions that can potentially be reused. For example, a loss function could be de�ned as follows:

function C = lossfunction(u : Data, y : Data, f : Parameters)
x = degradation_function(y, f)
C = mse_lossfunction(u, x)

endfunction

When determining the derivative of lossfunction , the AD framework will also di�erentiate the functions degradation_function
and mse_lossfunction automatically. This is a result of applying the chain rule recursively. Essentially, every function in the
call graph will be di�erentiated, up to arbitrary nesting level. When a function occurs multiple times in the call graph, this
function will only be di�erentiated once: the result will be “remembered” by the framework. Correspondingly, the result
of derivation or adjoint calculation is a function that has again a call graph with (generally) the same depth. This permits
further high-level optimizations by the Quasar compiler (kernel merging, inlining, loop fusion etc.).

Important to remark is that the metafunctions di� , di�mul and adjoint preserve the __device__ function modi�er of the
input function. This means that when the original (non-di�erentiated) function is declared as a __device__ function, the
derivated/adjoint functions are also a __device__ function. When used inside a loop, this permits parallelization of the loop.

For example, consider the pointwise RELU function:

function y = __device__ RELU(x : scalar)
y = max(x, 0)

endfunction

function y = pointwise_RELU(x : cube{4})
y = uninit(size(x))
for m=0..size(x,0)-1

for n=0..size(x,1)-1
for p=0..size(x,2)-1

for q=0..size(x,3)-1
y[m,n,p,q] = RELU(x[m,n,p,q])

endfor
endfor

endfor
endfor

endfunction

The �rst declaration de�nes the RELU function in a pointwise manner. The pointwise_RELU function then applies the function
to each element of a 4D cube. When calculating $di� (pointwise_RELU(x),x), the AD framework will also derive the derivative
of RELU. Because RELU is a device function, its derivative will also be a device function, so that the 4D for-loop can be
parallelized (and eventually executed in parallel on a multi-core CPU or GPU).

Control structures (loop, while, repeat, if)

One of the advantages of AD is that control structures can easily be handled. AD therefore nicely integrates in imperative
programming languages. One restriction is that the control structure conditions should not depend on the active variables
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(i.e., the variables which depend on the derivative variable).

For example, calculating the derivative of:

function C = total_variation_costfunc(g : mat, b : mat, lambda : scalar)
C = 0.0
for m=0..size(g,0)-1

for n=0..size(g,1)-1
if abs(g[m,n] - b[m,n]) > 20

C += (g[m,n] - b[m,n]).^2 % data fidelity
C += lambda*abs(g[m,n-1] - g[m,n]) % horizontal partial derivative
C += lambda*abs(g[m-1,n] - g[m,n]) % vertical partial derivative

endif
endfor

endfor
endfunction

with respect to g will not work due to the if condition abs(g[m,n] − b[m,n]) > 20 being dependent on the derivative g (more-
over, the condition is intrinsically non-di�erentiable). This issue is known as the if-problem in algorithmic di�erentiation.
A solution might be to replace the if with the multiplication by a weight calculated using a smooth function:

compare = x -> 1 / (1 + exp(-x)) % logistic function

function C = total_variation_costfunc(g : mat, b : mat, lambda : scalar)
C = 0.0
for m=0..size(g,0)-1

for n=0..size(g,1)-1
weight = compare(abs(g[m,n] - b[m,n]) - 20)
C += weight * (g[m,n] - b[m,n]).^2 % data fidelity
C += weight * lambda*abs(g[m,n-1] - g[m,n]) % horizontal partial derivative
C += weight * lambda*abs(g[m-1,n] - g[m,n]) % vertical partial derivative

endfor
endfor

endfunction

This approach guarantees that the obtained gradient is meaningful (i.e. does not su�er from the so-called vanishing gradient
problem).

Concerning loops, one restriction is that break and continue statements are currently not supported, due to di�culty in
reversing the resulting control �ow.

Nested functions

Derivation of functions containing inner functions is currently not supported. A possible solution is to place the inner
function within the same scope as the parent function.

However, taking derivatives of inner functions is permitted! This way, it is for example to implement an optimization
algorithm with gradient calculation, iterative update steps entirely within one single function.

In Quasar, functions are �rst-class citizens allowing functions to be passed as parameters to other functions, or allowing
functions to return function variables. Within the context of AD, this is only permitted when the compiler has full informa-
tion on the function. Logically, the compiler should be able to access the source code of the function. This is not possible
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in case the function is part of a conditional expression such as fn = x −> x < 0 ? func1 : func2. When the compiler cannot
access a function the compiler will

1. generate a warning indicating that the derivative of this function could not be determined automatically
2. when possible, mark the parent function as generic, so that in a later compilation step, the function parameter can be

determined at call-time (i.e., when the generic function is being called itself with concrete values).

This mechanism allows to write generic optimization methods which depend on function parameters. The algorithmic
di�erentiation then takes place at the moment that the optimization function is called with a concrete cost function. The
example section contains a few samples of this technique.

Built-in di�erentiation rules

For correct functioning, a number of di�erentiation rules are built-in into Quasar.CompMath.dll. This section gives an
overview of these di�erentiation rules.

Reduction Result Description

$di� (x[m,n], x[k, l ]) delta (m−k,n−l) Dirac delta (forward mode only)
$di� (x[m,n,p ], x[k, l , j ]) delta (m−k,n−l,p−j) Dirac delta (forward mode only)
$di� ( f (a + b ∗x) ,x) $di� ( f (x) , x) (a + b ∗ x) ∗b Chain rule
$di� ( f (g(x) ) , x) $di� ( f (x) , x) (g(x) ) ∗ $di� (g(x) , x) Chain rule

Additionally, standard di�erentiation rules for the operators +,−, .∗ ,∗, ./ ,/,^ and .^ are integrated.

Several mathematical functions have their derivatives already de�ned. These functions are de�ned using reductions in
Quasar:

Expression Replacement pattern

x −> $di� (abs(x) ,x) sign (x)
x −> $di� (abs(x) ,x) sign (x)
x −> $di� (exp(x) ,x) exp(x)
x −> $di� (exp2(x) ,x) exp2(x) .∗ log (2)
x −> $di� ( log (x) ,x) 1./ x
x −> $di� ( log2(x) ,x) 1./( x∗log (2) )
x −> $di� ( log10(x) ,x) 1./( x∗log (10) )
x −> $di� ( sin (x) ,x) cos(x)
x −> $di� (cos(x) ,x) −sin(x)
x −> $di� (tan(x) ,x) 1 + tan(x) .^2
x −> $di� (sinh(x) ,x) cosh(x)
x −> $di� (cosh(x) ,x) sinh(x)
x −> $di� (tanh(x) ,x) 1−tanh(x).^2
x −> $di� ( asin (x) ,x) rsqrt (1−x.^2)
x −> $di� (acos(x) ,x) rsqrt (1−x.^2)
x −> $di� (atan(x) ,x) 1./(1+ x .^2)
x −> $di� (asinh(x) ,x) 1./ sqrt (1+x .^2)
x −> $di� (acosh(x) ,x) 1./ sqrt (x.^2−1)
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Expression Replacement pattern

x −> $di� (atanh(x) ,x) 1./(1−x .^2)
x −> $di� ( sqrt (x) ,x) 0.5.∗ rsqrt (x)
x −> $di� ( rsqrt (x) ,x) −0.5∗x^(−1.5)
x −> $di� ( erf (x) ,x) 2∗exp(−x^2).∗ rsqrt (x)
x −> $di� ( erfc (x) ,x) −2∗exp(−x^2).∗rsqrt (x)
(a , x) −> $di� (a.^x,x) log (a) .∗ a.^x
x −> $di� (pow(a,x) ,x) log (a) .∗ a.^x
(x, n: int ) −> $di� (x^n,x) n∗x^(n−1)
(x, y) −> $di� (max(x,y) ,x) x>y?1:0
(x, y) −> $di� (max(x,y) ,y) x>y?0:1
(x, y) −> $di� (min(x,y) ,x) x<y?1:0
(x, y) −> $di� (min(x,y) ,y) x<y?0:1

Some of these de�nitions rely on relaxed di�erentiability conditions: the de�nitions may ignore that the function is non-
di�erentiable in a certain subset of their domain. In this case, it is common to either take the left derivative in each non-
di�erentiable point, the right derivative or an average of them. For example, the abs(x) function is non-di�erentiable in x=0,
nevertheless, the value of the sign function 0 is assigned to the derivative.

De�ning custom reductions

In some cases, the AD framework cannot determine the derivative (or adjoint) of a function automatically. Then the following
error will be reported:

Could not determine ‘$diff(f(x), x)‘. Consider defining a reduction to specify this function.

As suggested by the above error message, it is possible to manually specify derivatives of functions through reductions. An
example for the sum function is given below:

reduction (x : cube{:}) -> $diff(sum(x), x) = 1

The derivative of sum(x) in x is one because each component of x occurs in sum(x) with coe�cient 1. This is an example of a
multivariate function for which the derivative is currently not built-in (note that instead another mechanism exist to handle
multivariate functions, see Derivatives involving multivariate functions).

There may also be other reasons for de�ning custom derivatives: for example, to ensure that the derivative code is numer-
ically stable. An example is the softmax function, which calculation depends on the exponential function and is prone to
over/under�ow. These numerical problems can be solved using various methods (e.g., a scaling trick, logarithmic domain
calculations, . . . ), however the AD framework has currently no means of determining that derivative code may become
numerically instable. In this situation, it is best to de�ne the derivate manually.

When de�ning custom derivatives, it is important that the domain (in the above example x : cube {:} ) is well-de�ned, so that
the AD framework knowns under which conditions the reduction can be applied. For example, it is possible that a reduction
is de�ned for a realvalued domain, while a separate reduction is de�ned for a complexvalued domain. The AD framework
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then selects the best matching reduction, according to a reduction selection strategy (see Quasar’s quick reference manual
for more information).

Reductions can also have additional where clauses which express extra conditions to be checked when applying the reduction.
If the where clause is evaluated at compile-time to be false, the di�erentiation rule is not applied. Reductions de�ning
di�erentiation rules follow the Quasar reduction rules and therefore do not di�er from ‘ordinary’ reductions. The reductions
can also be prioritized, by adding the priority =high attribute:

reduction {priority=high}, (x,...f) -> $diff(sum([f(x)]),x) = sum_diff(f, x)

Prioritized reductions can override the builtin reductions from the previous section. Note that applying $di� , $di�mul and
$adjoint will generate a reduction with normal priority. This reduction allows the AD framework to remember derivatives
that have been generated earlier on.

When de�ning a custom di�erentiation rule for a multi-variate function, e.g., in a library of specialized functions, it is best to
de�ne the two main ‘building blocks’: $di�mul and $adjoint (of the derived function). This guarantees that the AD framework
can apply the functions in general circumstances. The following table gives an overview of which de�nitions are required:

Univariate function Multivariate function

$di� () $di�mul ()
$adjoint () $adjoint ()

In other words, for a multivariate vector function, the AD framework will never use the $di� () function, due to the high
dimensionality (for a function with M inputs and N outputs, the result needs to be stored in a matrix of size M ×N ).

Perhaps it is not so obvious how $di�mul and $adjoint need to be de�ned. For this purpose, we �rst consider the example of
a leaky integrator:

function y = __device__ leaky_RELU(x : scalar, alpha : scalar)
y = max(x, x * alpha)

endfunction

reduction (x, alpha) -> $diff(leaky_RELU(x, alpha), x) = x < 0 ? -1 : alpha
reduction (x, alpha) -> $adjoint(leaky_RELU(x, alpha), x) = leaky_RELU(x, alpha)

Here, __device__ ensures that the function (and its adjoint/derivatives) can be executed on accelerator devices (e.g., GPU).
The leaky rely function is self-adjoint since it is a pointwise operation.

As an example of a multivariate function, we consider the logistic regression function:

function y : vec = logres(x : vec)
y = exp(x - max(x))
y = y / sum(x)

endfunction

In this function, a scaling is applied which relies on a multi-variate function sum. One possibility is to follow the approach
from Derivatives involving multivariate functions, although here we indicate how the derivative can be speci�ed manually.
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function dy : scalar = logresderiv(x : vec, dx : vec)
y = exp(x - max(x))
h = sum(x)
n = numel(x)
dy = dotprod((dy * h - y .* x)/h.^2, dx)

endfunction

reduction (x, dx) -> $diffmul(logres(x), x, dx) = logresderiv(x, dx)

As mentioned before, the $di�mul function evaluates the derivative of logres (x) multiplied by the vector dx.

Index transformations and boundary extension methods

The AD framework can handle various index transformations, such as y[k, l]=x[2∗k+20,4∗ l−20] and also the boundary exten-
sion methods are used in the derived code (for example, function parameters or variables declared with ’clamped, ’ circular ’
and ’mirror ’ access speci�ers).

There is one restriction: the indices cannot contain active variables (i.e., variables which depend on the derivative variable).
The following error will be generated:

Auto-di�erentiation of function func_deriv$u: Could not determine the derivative of x[u,v] with respect to out.
The result I get is $di� (x[u,v ], out) .

The reason is that the chain rule cannot be directly be applied to a discrete function such as x[k, l ]. In these situations it is
common to use a �nite di�erence method. Although the AD framework does not o�er automated support for such methods,
it is still possible to calculate derivatives involving discrete functions.

A �nite di�erence method can be implemented as follows:

f = (x : mat, k : scalar, l : scalar) -> x[int(k), int(l)]
f_dk = (x : mat, k : scalar, l : scalar) -> f(x, k+1, l) - f(x, k, l)
f_dl = (x : mat, k : scalar, l : scalar) -> f(x, k, l+1) - f(x, k, l)

reduction (x : mat, k : scalar, l : scalar) -> $diff(f(x, k, l), k) = f_dk
reduction (x : mat, k : scalar, l : scalar) -> $diff(f(x, k, l), l) = f_dl

This technique essentially tells the AD system to treat f [k, l ] as continuous function, for which the gradient can be calculated.
This gives the �exibility of de�ning the �nite di�erence formula to be used (e.g., forward di�erence f(x, k+1, l)−f(x, k, l),
backward di�erence f(x, k, l)− f(x, k − 1, l) or central di�erence f(x, k + 1, l)− f(x, k − 1, l).

An alternative method consists of replacing the discrete derivative by a �rst order Taylor series expansion: f [k + ∆k, l +

∆l] = f [k, l] + ∆kfx(k, l) + ∆lfy(k, l) where fx and fy are again discrete derivatives (e.g., �nite di�erences). With such
expansion, the AD system can di�erentiate with respect to ∆k and ∆l. This approach is useful for image registration
applications.
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Higher order derivatives

Obtaining higher order derivatives of a univariate scalar function can be obtained by applying $di� () multiple times:

f_xx = $diff($diff(f(x),x),x)

However, this becomes more interesting when looking at higher-order derivatives of multivariate functions. The Hessian
of a function f : RN → R can be de�ned using the Jabobian of the adjoint gradient:

H(f(x)) = J(∇f(x))T

where the Jacobian matrix of a function g : RN → RM is de�ned by:

J =

[
∂g

∂x1
· · · ∂g

∂xn

]
=


∂g1
∂x1

· · · ∂g1
∂xN

...
. . .

...
∂gM
∂x1

· · · ∂gM
∂xN


The gradient of a function f can be determined as follows:

gradient = $unapply($diff(cost_fn(x), x), x)

where the function $unapply() undoes the function parameter binding. It is similar to the lambda expression:

gradient = x -> $diff(cost_fn(x), x)

However, the di�erence is that the $unapply() function takes the parameter type information of x from the surrounding scope,
whereas the type of x in the lambda expression is unspeci�ed. To obtain higher-order derivatives, the type information needs
to be preserved, therefore we use the $unapply() function here.

The product of the Hessian matrix and the gradient can then be calculated using the $di�mul () function:

hessian = $unapply($diffmul(gradient(x), x, dx), x, dx)

Suppose that we additionally require the adjoint of the Hessian operator. This is no problem:

hessian_t = $unapply($adjoint(hessian(x, dx), dx), x, dx)

Important to notice is that hessian and hessian_t need to be considered as operators: they evaluate the multiplication of the
Hessian matrix in point x with an arbitrary vector ∆x. Here, the Hessian matrix never needs to be stored in memory;
therefore approximation methods such as the diagonal of the matrix are no longer required. This approach opens up the
way to implement generic Newton-Raphson optimization procedures.

If one is nonetheless interested in the entire Hessian matrix, then the generated function hessian needs to be evaluated for
all N unit basis vectors ∆x.
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4 DERIVATIVES INVOLVING
MULTI-VARIATE FUNCTIONS

Derivatives involving multi-variate functions

Implementation of backward AD mode involving multi-variate builtin functions (e.g., sum, prod(x ,1) ) pose several challenges:
1) the derivatives and adjoint operators need to be implemented explicitly (e.g., using reductions) and 2) the derivative of
the composition of several of these functions can be calculated using the chain rule, although the resulting implementation
is not necessarily computationally e�cient.

Instead, the AD framework allows vector and matrix operations to be converted to loops. Once in loop form, the AD
functions $di� , $di�mul , $adjoint can be applied. This can be achieved by placing the following code attribute inside the
function to be derived:

{!ad_support convert_matrix_ops_to_loops=true}

The following operations are supported:

• unary/binary operations involving matrices
• vector slices a .. b and a .. b .. c
• univariate mathematical functions sin , cos, tan etc.
• aggregation operations sum(x), prod(x ,1) , maxdim(x,2) etc.
• reshaping functions shu�edims (x, [2,1,0]) , reshape, transpose
• initialization functions eye, zeros, ones etc.
• cumulative functions cumsum(), cumprod()

The loop approach relies on the automatic loop parallelizer, parallel reduction and parallel pre�x sum transforms to gener-
ate an e�cient implementation for the di�erentiated function. The following example demonstrates how to calculate the
derivative of the cumsum function.

import "Quasar.CompMath.dll"

function y = cumsum_p(x : mat)
{!ad_support convert_matrix_ops_to_loops=true}
y = cumsum(x)

endfunction

cumsum_deriv = (x,dx) -> $diffmul(cumsum_p(x),x,dx)

Here, the cumsum needs to be wrapped in a outer function, in order to be able to set the {! ad_support} code attribute.

Multi-GPU Algorithmic Di�erentiation

The AD framework also processes scheduling instructions. During the forward or backward accumulation, the scheduling
instructions of the di�erentiated function are adjusted so that the derivative calculation is performed on the same device
(CPU, GPU) as for the original function. For example, based on some auxiliary functions, a simple CNN can be de�ned as
follows:
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function y = forward_network(x : Data, w : NetworkParameters)
{!sched gpu_index=0}
part1 = pointwise_RELU(convolve(convolve_biased(x, w.w1a, w.bias), w.w2b))
{!sched gpu_index=1}
part2 = pointwise_RELU(convolve(convolve_biased(x, w.w1b, w.bias), w.w2b))
{!sched mode=auto}
y = convolve(merge_layers(part1, part2), w.w3)

endfunction

The di�erentiation for part1 will execute on GPU 0, while the di�erentiation for part2 will be performed on GPU 1. The code
related to the di�erentiation of �nal step (with merge_layers) is subjected to automatic runtime scheduling.

Automatic vectorization

Di�erentiated functions follow the same vectorization rules as the underlying function. Generally, when a scalar function
is vectorizable, the di�erentiated function is also vectorizable. By inserting

{!kernel_transform enable="simdprocessing"}

inside the for loops, the code will automatically vectorize and map onto the best suited SIMD processing implementation
for the underlying device (e.g. AVX for x64, half2 for CUDA half precision calculations):

function C = data_fidelity(g : mat, b : mat)
C = 0.0
for m=0..size(g,0)-1

for n=0..size(g,1)-1
{!kernel_transform enable="simdprocessing"}
C += (g[m,n] - b[m,n]).^2

endfor
endfor

endfunction

© 2016-2023Ghent University / imec / Gepura. Patented technology under WO patent 2015150342. 18

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015150342


5 THE AD COMPILER FRAMEWORK

The AD compiler framework

The AD framework is in the �rst place designed for a loop-based modular programming style, such as in the following
example:

function C = data_fidelity(g : mat, b : mat)
C = 0.0
for m=0..size(g,0)-1

for n=0..size(g,1)-1
C += (g[m,n] - b[m,n]).^2

endfor
endfor

endfunction

function C = total_variation(g : mat)
C = 0.0
for m=0..size(g,0)-1

for n=0..size(g,1)-1
C += abs(g[m,n-1] - g[m,n]) % horizontal partial derivative
C += abs(g[m-1,n] - g[m,n]) % vertical partial derivative

endfor
endfor

function

function C = costfunc(g : mat, b : mat, lambda : scalar)
C = data_fidelity(g, b) + lambda * total_variation(g)

endfunction

In this programming style, every operation is expressed explicitly as a calculation using scalar values and the AD framework
can perform the various required operations (di�erentiation, adjoint calculations, reversal of operations). The multidimen-
sional loops are further handled and optimized by the Quasar compiler infrastructure (e.g. automatic loop parallelization).

To take advantage of multivariate functions like sum, min, max, the corresponding high-level expressions can be lifted to
scalar calculations (see Derivatives involving multi-variate functions). This way, these operations are all handled by the AD
framework.

In this section, we give an overview of the relevant techniques that are used behind the scenes. This information is mostly
useful when inspecting the code that is generated by the AD framework.

Simpli�ed assignment form

The Quasar language allows various ways for assignments to be performed. Assignments can be nested within expressions
fn(a=1,b=2), multiple variable assignments can be used [a ,b ]=[1,2] , staged assignments a=b=c and self-updates a=f(a). To
be handled correctly by the AD framework, these assignments are splitted into separate statements and when necessary
temporary variables are introduced:

1. Multiple assignments within one statement (such as a=1; b=2; c=3) are splitted into three seperate statements.
2. Multiple variable assignment (such as [a ,b ]=[1,2] ) are splitted into two separate statements, with exception when per-

forming swapping operations as [a ,b]=[b,a] or [a ,b,c]=[c ,b,a]. In the latter case, temporary variables are introduced.
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3. Staged assignments (such as a=b=c) are also splitted into separate statements.
4. Self updates (such as a=f(a)) becomes tmp=a; a=f(tmp)

Ternary if conversion

The AD framework internally converts ternary if conditionals to “regular” if-control structures:

result = a?b:c

becomes

if a
result = b

else
result = c

endif

Correspondingly, the restrictions of “regular” control structures also apply to ternary if conditionals. In particular the
condition a should not depend on active variables (variables that depend on the derivative variable).

Tape drive

The tape drive is used for backward AD, and denotes the sequential array that is used to store intermediate values from the
forward calculations. To enable loop parallelization without sequential dependencies, the AD framework implements uses
compiler technique called “data privatization”. The approach is functionally identical to the tape drive, with the di�erence
that the dependencies between subsequent loop iterations (and hence other threads) are removed.

Data privatization essentially ensures that every thread in a parallel execution has its own copy of the data. The compiler
generates memory allocation statements to store the intermediate values. Two disadvantages of this technique are 1) extra
(temporary) memory is required and 2) for a GPU, global memory is used for storing the privatized variables. In future
versions, shared memory may be used, potentially yielding a signi�cant speedup.

To alleviate the disadvantages, it is desirable to limit the number of intermediate values in the code. However, when most
intermediate values are removed, the expansion problem of symbolic di�erentiation comes into play. It is therefore necessary
to trade the bene�ts of privatized variables with the increased memory usage and memory access times. This is still an open
problem.
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6 GENERIC GRADIENT SOLVERS

Generic gradient solvers

As mentioned before, the meta functions $di� , $di�mul and $adjoint can be applied without the function de�nitions being
speci�ed. This requires the compiler to specialize the function at call-time, giving a technique to specify gradient-based
optimization techniques in a genral way.

In this section, we give a number of examples of such gradient solvers.

Conjugate gradient solver

The iterative conjugate gradient (CG) solver is applicable to large sparse systems of linear equations. It can also be used to
solveL2 minimization problems. Compared to gradient descent, the conjugate gradient method optimizes the step size based
on the previous gradient that was calculated. The method produces the exact solution after a �nite number of iterations,
independent of the matrix dimensions (apart from rounding errors).

function x = conjugate_gradients(A, y, max_iter=20, tol=1e-15)
x = 0
A_H = $unapply($adjoint(A(y), y), y)
r = A_H(y)
p = r
new_err = dotprod(r, r)

for it=1..max_iter
err=new_err
print "CG iteration ",it," err=",err
A_p = A_H(A(p))
alpha = err / dotprod(p, A_p)
x = x + alpha * p
r = r - alpha * A_p
new_err = dotprod(r, r)
if (new_err/numel(x) < tol)

break
endif
beta = new_err / err
p = r + beta * p

endfor
endfor

Non-linear conjugate gradient solver

Non-linear CG is a generalization of linear CG to cost functions with nonlinear derivatives (i.e. nonlinear optimization). The
method calculates a local conjugate gradient direction and then employs a line search to determine the optimal step size.

function y = nonlinear_cg(cost_fn, x, max_iter=120, epsilon=1e-4)
gradient = $unapply($diff(cost_fn(x), x), x)

function alpha = line_search(cost_fn, y, s)
alpha = 4.0
orig_val = cost_fn(y)
while cost_fn(y + alpha * s) > orig_val
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alpha *= 0.25 %* can be adjusted
endwhile

endfunction

% Initial solution
y = x

% Steepest decent solution
Delta = -gradient(y)
s = Delta
alpha = line_search(cost_fn, y, s)
y += alpha * s

for k=0..max_iter
print "iter ",k," cost=",cost_fn(y)

% Calculate the steepest direction
Delta_last = Delta
Delta = -gradient(y)

% Fletcher-Reeves update (other update formulas may be used as well)
beta = dotprod(Delta,Delta)/dotprod(Delta_last,Delta_last)

% Calculate the conjugate direction
s_last = s
s = Delta + beta * s_last

% Perform a line search
alpha = line_search(cost_fn, y, s)

% Update the solution
y_old = y
y = y_old + alpha * s

% Stop condition
if sum(abs(y-y_old)) < epsilon

break
endif

endfor
endfunction

A hybrid conjugate gradient minimizer

Nonlinear CG can as well be applied to quadratic cost functions, although in this case, the line search is unnecessary.
Taking into account that the AD framework allows to determine whether a function is linear (or a�ne), we can write a
generic arguments of minima (argmin) function:

function z = argmin(f : [(??,??) -> scalar], y0)
symbolic x : cube, y : cube

% Calculate the derivative of f with respect to x
g = $unapply($diff(f(x, y), x), x, y)

if $isaffine(g(x, y), x)
print "f is linear in x: using conjugate gradients"
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z = linear_cg(f, g, y0)
else

print "f is non-linear in x: using non-linear conjugate gradients"
z = nonlinear_cg(f, g, y0)

endif
endfunction

Newton-Raphson (second order AD) minimizer

The Newton-Raphson algorithm generally converges in fewer iterations than the nonlinear CG method, although each
iteration requires more computation. The Newton-Raphson algorithm requires the Hessian matrix (which is a second order
derivate). Luckily, the Hessian matrix does not need to be fully calculated: only the product of the Hessian matrix with a
vector is required. The (sparse) Hessian matrix is inverted using the conjugate gradient method.

function y = newton_raphson(cost_fn : [?? -> scalar], x, max_iter=10, epsilon=1e-6)
dx=zeros(size(x))
gradient = $unapply($diff(cost_fn(x), x), x)
% The hessian is actually the Jacobian of the gradient
hessian = $unapply($diffmul(gradient(x), x, dx), x, dx)
% Calculate the adjoint of the Hessian
hessian_t = $unapply($adjoint(hessian(x, dx), dx), x, dx)

max_inner_iter = 1
step_size = 0.1
tol = 1e-6
lambda = 1e-4 % regularization

% Initial solution
y = x
for k=0..max_iter

% Solve H f(y) = x using normal equations
% => H^T H f(y) = H^T grad(y)
u = 0
g = gradient(y)
r = hessian_t(y,g)
p = r
new_err = dotprod(r, r)
print "iteration ",k," err=",new_err

for it=1..max_inner_iter
err=new_err
A_p = lambda*p + hessian_t(y, hessian(y, p))
alpha = err / dotprod(p, A_p)
u = u + alpha * p
r = r - alpha * A_p
new_err = dotprod(r, r)
if new_err/numel(u) < tol

break
endif
beta = new_err / err
p = r + beta * p

endfor

y_old = y
y = y_old - step_size * u
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% Stop condition
if sum(abs(y-y_old)) < epsilon

break
endif

endfor
endfunction
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Examples

In this section, we give a number of examples on how to use the AD framework in practice.

Example 1: Total variation denoising

Total variation regularization is one of the basic solutions for several inverse problems, including image denoising and
deblurring.

import "Quasar.CompMath.dll"

% C = sum((g - b).^2) + lambda*|dg/dx| + lambda*|dg/dy|
function C = costfunc(g : mat, b : mat, lambda : scalar)

C = 0.0
for m=0..size(g,0)-1

for n=0..size(g,1)-1
C += (g[m,n] - b[m,n]).^2 % data fidelity
C += lambda*abs(g[m,n-1] - g[m,n]) % horizontal partial derivative
C += lambda*abs(g[m-1,n] - g[m,n]) % vertical partial derivative

endfor
endfor

endfor

function y = gradient_descent(cost_fn, x, step_size=0.01, max_iter=100, epsilon=1e-4)
% Maple-like syntax for obtaining the gradient
gradient = $unapply($diff(cost_fn(x), x), x)

% Initial solution
y = x
for k=0..max_iter

y_old = y
y = y_old - step_size * gradient(y)
print "iteration ",k+1, ": ", cost_fn(y)

% Stop condition
if sum(abs(y-y_old)) < epsilon

break
endif

endfor
endfunction

im = imread("lena_big.tif")[:,:,1]
im_noisy = im + 25 * randn(size(im))
lambda = 40

% Call the gradient descent algorithm to derive the cost function
im_den = gradient_descent((x -> costfunc(x, im_noisy, lambda)), im_noisy)
imshow(im_den,[0,255])

psnr = (x, y) -> 10*log10(255^2/mean((x - y).^2))
print "psnr_in=", psnr(im_noisy, im), " dB"
print "psnr_out=", psnr(im_den, im), " dB"

Note in particular that for calling the gradient_descent function, a lambda expression x −> costfunc(x, im_noisy, lambda) is
passed. This allows for closure variable binding, and gives a mechanism to essentially store pass extra data to a function
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which expects a function f(x) with a single input argument. In other words, the variables im_noisy and lambda which are
locally de�ned, can be passed to the cost function.

Example 2: Non-blind image deconvolution

This example illustrates modularity using the chain rule, for a deblurring application. The degradation is modeled using a
forward blur �lter. Then a data �delity function measures the closeness of the current solution to the measurement data.
Both the blur �lter and data �delity function are joined together in the costfunc . The remaining of the example is essentially
the same as in the TV example.

function [y : mat] = blur_filter(x : mat, f : vec)
N = int(numel(f)/2)
y = zeros(size(x))
x1 = zeros(size(y))

% Horizontal filter
for m=0..size(x,0)-1

for n=0..size(x,1)-1
sum = 0.0
for k=0..numel(f)-1

sum += x[m,k+(n-N)] * f[k]
end
x1[m,n] = sum

endfor
endfor

% Vertical filter
for m=0..size(x,0)-1

for n=0..size(x,1)-1
sum = 0.0
for k=0..numel(f)-1

sum += x1[k+(m-N),n] * f[k]
endfor
y[m,n] = sum

endfor
endfor

endfor

function C = data_fidelity(u : mat, y : mat)
C = 0.0
for m=0..size(u,0)-1

for n=0..size(u,1)-1
C += (u[m,n] - y[m,n])^2

endfor
endfor

endfor

function C = costfunc(x : mat, y : mat, f : vec)
u = blur_filter(x, f)
C = data_fidelity(u, y)

endfunction

function y = gradient_descent(cost_fn, x, step_size=0.1, max_iter=500, epsilon=1e-4)
% Maple-like syntax for obtaining the gradient
gradient = $unapply($diff(cost_fn(x), x), x)
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% Initial solution
y = x

for k=0..max_iter
y_old = y
y = y_old - step_size * gradient(y)

% Stop condition
if sum(abs(y-y_old)) < epsilon

break
endif

endfor
endfunction

f = [1,2,3,2,1]
f = f / sum(f)

im = imread("lena_big.tif")[:,:,1]

% Blur and add noise
im_blurred = blur_filter(im, f) + 2*randn(size(im))

im_restored = gradient_descent(((x : mat) -> costfunc(x, im_blurred, f)), im_blurred)

imshow(im_restored,[0,255])

psnr = (x, y) -> 10*log10(255^2/mean((x - y).^2))
print "psnr_in=", psnr(im_blurred, im), " dB"
print "psnr_out=", psnr(im_restored, im), " dB"

Example 3: 1D Newton Raphson

The following example demonstrates how to implement Newton Raphson in a 1D (scalar) setting. The implementation
is signi�cantly simpler compared to the multivariate version, because the inverse of the Hessian matrix amounts to the
reciprocal of a scalar number.

function y = f(x : scalar)
y = -x.^4 + 6*x.^2 + 4*x

endfunction

function y = f(x : vec)
y = -x.^4 + 6*x.^2 + 4*x

endfunction

function x = gauss_newton(costfunc, x0, epsilon = 1e-8)
x = x0
f1 = $unapply($diff(costfunc(x), x), x)
f2 = $unapply($diff($diff(costfunc(x), x), x), x)

repeat
x_old = x
x = x - f1(x)/f2(x)
print x

until abs(x - x_old) < epsilon
endfunction
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function [] = main()
% Finding the minimum of a scalar function
x = gauss_newton((x : scalar -> f(x)), 0.0)
print x

r = linspace(-1,1,256)
plot(r, f(r))

endfunction
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8 DIFFERENTIABLE PROGRAMMING: CONVO-
LUTIONAL NEURAL NETWORKS STEP BY STEP

Di�erentiable Programming: Convolutional Neural Networks step by step

In this tutorial, we explain how to implement deep neural (DL) networks with forward and backward propagation using
di�erentiable programming, a new programming paradigm that is recently mentioned on the Facebook page of Yann Lecunn
(Jan, 2018):

“OK, Deep Learning has outlived its usefulness as a buzz-phrase. Deep Learning est mort. Vive Di�erentiable
Programming! Yeah, Di�erentiable Programming is little more than a rebranding of the modern collection Deep
Learning techniques, the same way Deep Learning was a rebranding of the modern incarnations of neural nets
with more than two layers. But the important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them from examples using some form
of gradient-based optimization. An increasingly large number of people are de�ning the networks procedurally
in a data-dependent way (with loops and conditionals), allowing them to change dynamically as a function of
the input data fed to them. It’s really very much like a regular progam, except it’s parameterized, automatically
di�erentiated, and trainable/optimizable. Dynamic networks have become increasingly popular (particularly for
NLP), thanks to deep learning frameworks that can handle them such as PyTorch and Chainer (note: our old deep
learning framework Lush could handle a particular kind of dynamic nets called Graph Transformer Networks,
back in 1994. It was needed for text recognition). People are now actively working on compilers for imperative
di�erentiable programming languages. This is a very exciting avenue for the development of learning-based AI.”

In di�erentiable programming, networks are speci�ed using parametric loss functions, in a modular fashion, and the lan-
guage provides a means to calculate the derivative of the loss function. This is accomplished using algorithmic di�erentiation
(AD, also called automatic di�erentiation), which - rather than calculating the derivatives numerically or symbolically - ap-
plies the chain rule to every part of the algorithm, taking control structures like loops and branches into account. When
applied to a modular design such as a neural network, AD calculates the derivatives of all of the network components as well
as the derivative of the loss function which combines the component derivatives. For neural networks, this automatically
yields the backpropagation.

Di�erent to many existing DL approaches is that AD is applied on a much �ner granularity, namely, instead of treating
the network components as building blocks and relying on pre-implemented derivatives of the building blocks, the AD
framework can analyze and calculate derivatives for any algorithm that implements a forward layer. This brings a lot of
�exibility in designing the individual layers (think about non-standard layers such as layers that estimate depth maps from
2D images), but also leads to a programming model that is conceptually easy to understand.

Additionally, AD can also be applied (and is intended to be applied) in applications other than neural networks (for example,
to optimize parameters of di�erentiable cost functions using gradient descent-based methods), but for this tutorial we stick
to the deep learning application.
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Step-by-step tutorial

Algorithmic di�erentiation

Quasar has a special function $di� () which allows you to calculate the (partial or non-partial) derivative of a function
speci�ed in Quasar, using algorithmic di�erentiation (AD). How does this work? A Quasar function is interpreted as a
sequence of function compositions y = f(g(h(x))) to which the chain rule can be applied:

dy

dx
=

dy

dw2

dw2

dw1

dw1

dx

There are two modes of AD: forward accumulation, in which the chain rule is traversed from inside to outside (just like
when calculating the derivative symbolically):

dwi

dx
=

dwi

dwi−1

dwi−1

dx
with w3 = y

and backward accumulation which traverses the chain rule from outside to inside:

dy

dwi
=

dy

dwi+1

dwi+1

dw
with w0 = x

Both modes give the same result but they have di�erent characteristics when applied to multivariate functions versus vector
functions. Quasar implements mainly the backward accumulation in the form of source-to-source translation with some
support for forward accumulation (actually, the most e�cient code generation, optimization and parallelization is obtained
using a mix of forward and backward propagation). The advantage of AD is that is can be applied to complex functions
with control structures (if, for, while etc.). Moreover, when applied to the cost function of a neural network, the backward
accumulation gives the backpropagation functions in an automatic way. A side e�ect is that AD is not limited to cost
functions of neural networks, it is therefore a generalizing framework and also called di�erentiable programming.

Library imports

At the beginning of the program, we import the Quasar CompMath library.

import "Quasar.CompMath.dll"

This library is actually a compiler plugin, and adds several metafunctions to Quasar (metafunctions are functions that are
evaluated at compile-time and are always indicated by the pre�x $), such as $di� (for di�erentiation) and $adjoint (for adjoint
calculation of a linear function).

Next, we also import the DNN library, which is thin layer on top of the NVIDIA CuDNN library and hence implements basic
blocks of neural networks.

import "Quasar.DNN.dll"
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For visualization purposes, we also import the Quasar graphical user interface library:

import "Quasar.UI.dll"

De�ning the basic layers

Recti�ed linear unit The most straightforward way to implement a recti�ed linear unit is the following:

function y = __device__ RELU(x : scalar)
if x<0

y=0
else

y=x
endif

endfunction

Here, __device__ indicates that the function will be compiled to run on an accelerator (e.g., GPU). We can calculate the
derivative of the function with respect to the variable x simply as follows:

RELU_deriv_x = x -> $diff(RELU(x), x)

which generates the following function:

function y_deriv = __device__ RELU_deriv_x(x:scalar)
if x<0

y_deriv=0
else

y_deriv=1
endif

endfunction

In this case, the resulting function is quite trivial, but the AD framework is much more general: various algorithmic con-
structs, such as loops, nested branches, matrix/vector operations, aggregation functions can be used within the function.
Note that the derivative of RELU(x) with respect to x does not exist in x=0, however, it is common for AD frameworks (as
well as in neural networks) to ignore this and to provide either the left or the right derivative in this point.

Alternatively, the RELU function can be implemented in branch-free manner, as follows:

function y = __device__ RELU(x : scalar)
y=max(x,0)

endfunction

Note: the Quasar compiler actually has an internal branch divergence reduction transform which converts the if branch
from the above example to a branch-free form.

The $di� () function applies the chain rule to the function that calculates the RELU. To obtain the result, the derivative of
max(x,0) with respect to x is known. In Quasar, derivatives of arbitrary functions can be speci�ed using reductions. For this
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bivariate function, this gives:

reduction (x, y) -> $diff(max(x, y), x) = (x > y ? 1 : 0)
reduction (x, y) -> $diff(max(x, y), y) = (x > y ? 0 : 1)

A reduction is a pattern that works on the abstract syntax tree of the computer program (sometimes also called “rewriting
rule”): whenever the compiler encounters an “pattern” expression $di� (max(x, y) , x) with free variables x and y, the com-
piler will replace the left-handed side of the equality by the right-handed side. Reductions provide a simple mechanism to
add domain knowledge to the compiler. Some additional di�-reductions that are useful:

reduction x -> $diff(exp(x), x) = exp(x)
reduction x -> $diff(tanh(x), x) = 1 - tanh(x).^2

Note that all of these “basic” di�erentiation reductions are integrated in Quasar.CompMath.dll, so it is no longer necessary
to de�ne them yourselves for the most cases. The above code applies a RELU function to an individual scalar value. To
implement a neural network layer, it is desirable to apply the RELU function to each element of the data cube. This can be
achieved by using for-loops:

function y = pointwise_RELU(x : Data)
y = zeros(size(x))
for [m,m,p,q]=0..size(x,0..3)-1

y[m,n,p,q] = RELU(x[m,n,p,q])
endfor

endfunction

Here we use a 4-dimensional for-loop (a syntax that was introduced in Quasar in Feb. 2019). The Quasar compiler will
parallelize the for-loop automatically, to run on GPU (or on multi-core CPU). Also, when calculating the derivative of
pointwise_RELU, for loops will be generated that are automatically parallelized and optimized for the target device. The
advantage of AD is then that we no longer need to think about the implementation of the derivatives (or, in alternative
words, the back propagation).

Data and parameter type de�nitions

Next, we can think about the data structures and data layout. In principle, Quasar does not impose any restrictions here,
but to avoid unnecessary conversions, it is a good idea to align with the CuDNN library. For example, a common choice is
to represent the data in NCHW (number, channels, height and width) format, which means that the �rst dimension is the
batch, the second dimension contains the color channels, the third dimension the image height and the fourth the image
width. Idem for the parameters:

type Data : cube{4} % in NCHW format

where cube{4} is a 4D hypercube (also called tensor). For convolutional layers, we can represent the weights in a similar
format
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type Parameters : cube{4} % in PCHW format

where PCHW stands for (output, channels, height and with). A convolutional layer has then C input channels and P output
channels, the convolution is applied to every image of the batch.

The parameters of an entire network with three convolutional layers and one bias can then be represented as follows:

type NetworkParameters : vec[{Parameters, Parameters, Parameters, vec}]

which denotes a “cell” vector of length 4, where each element is of the speci�ed type. Each element of a variable of type
NetworkParameters is then either a 4D cube or a 1D vector, depending on the position. Note that arbitrary (nested) cell
structures can be de�ned that work within the AD framework. The advantage of cell structures in Quasar is that they allow
arithmetic calculations. For example, a recursive �lter on the network parameters can be implemented simply as follows:

params : NetworkParameters = init_network_params()
new_params : NetworkParameters = ...
params = params + alpha * (new_params - params)

Later, we will see that the network parameters can also be represented by a user-de�ned class (dynamic class) which also
supports high-level arithmetic. This allows naming the individual parameters/parameter groups, which generally leads to
more readible code and less bugs. To keep things simple, we will proceed with the cell vector de�nition from above.

Convolutional layers

A convolution is fairly straightforward to implement in Quasar. To enable AD, we specify the implementation using a
loop-nest rather than using a kernel function.

function [y : Data] = convolve(x : Data, f : Parameters, radius : int)
radius = int(size(f,2)/2)
for [b,p,m,n]=0..[size(input,0),size(weights,2),size(input,2),size(input,3)]-1
sum = 0.0
for [dy,dx]=-radius..radius
for c = 0..size(input,1)-1
sum += weights[c,p,dy+radius,dx+radius,c] * input[b,c,m+dy,n+dx]

endfor
endfor
result[b,p,m,n] = sum

endfor
endfunction

Again, we may obtain the derivatives as follows:

deriv_conv_f = (x, f, bias, radius) -> $diff(convolve(x, f, bias, radius), f)
deriv_conv_x = (x, f, bias, radius) -> $diff(convolve(x, f, bias, radius), x)
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In practice, convolutional layers are quite computationally intensive, therefore the above implementation needs to be opti-
mized more (in particular, by exploiting the exact value of radius and size ( input ,1) ; and by taking of advantages of shared
memory of the GPU). Many (semi)automatic optimizations are available in the Quasar compiler; the 4D loop will be paral-
lelized and the resulting kernel function will run e�ciently on a GPU.

As an alternative, it is useful to use hand-tuned functions from the CuDNN library. For this purpose, we implement convolve
using the cudnn_convolution_forward.

function [y : Data] = convolve(x : Data, f : Parameters)
[K,L] = int(size(f,2..3)/2) % half filter support size
conv_desc = new(qdnn_conv_descriptor)
conv_desc.pad_w = L
conv_desc.pad_h = K
input_c = x
output_c = uninit(size(x,0),size(f,0),size(x,2),size(x,3))
cudnn_convolution_forward(1.0, input_c, 0.0, output_c, f, conv_desc)
y = output_c

endfunction

However, the side e�ect is that the $di� function now cannot see the derivatives of cudnn_convolution_forward with respect
to x and f. We therefore need to specify these derivatives manually. The derivatives are actually nothing more than the
backward steps of the convolutional layer:

function [df : Parameters] = convolve_diff_f(x : Data, f : Parameters, y : Data)
[K,L] = int(size(f,2..3)/2)
conv_desc = new(qdnn_conv_descriptor)
conv_desc.pad_w = L
conv_desc.pad_h = K
input_c = x
dzdoutput_c = y
dzdw = uninit(size(f))
cudnn_convolution_backward_filter(1.0,input_c,dzdoutput_c,0.0,dzdw,conv_desc)
df = dzdw

endfunction

function [dx : Data] = convolve_diff_x(x : Data, f : Parameters, y : Data)
[K,L] = int(size(f,2..3)/2)
conv_desc = new(qdnn_conv_descriptor)
conv_desc.pad_w = L
conv_desc.pad_h = K
input_c = copy(x)
dzdoutput_c = copy(y)
dzdinput = uninit(size(input_c))
cudnn_convolution_backward_data(1.0,f,dzdoutput_c,0.0,dzdinput,conv_desc)
dx = dzdinput

endfunction

As above, we use reductions to allow the compiler to use the convolve_di�_f and convolve_di�_x as derivatives of convolve,
respectively with respect to f and x:

reduction (x, f, y) -> $diffmul(convolve(x, f), f, y) = convolve_diff_f(x, f, y)
reduction (x, f, y) -> $diffmul(convolve(x, f), x, y) = convolve_diff_x(x, f, y)
reduction (x, f, y) -> $adjoint(convolve_diff_f(x, f, y), y) = convolve_diff_f(x, f, y)
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reduction (x, f, y) -> $adjoint(convolve_diff_x(x, f, y), y) = convolve_diff_x(x, f, y)

Now something special has happened: we are specifying $di�mul () and $adjoint () . For $di�mul () the reason is that convolve
is a function that maps a 4D cube onto a 4D cube. If we determine the derivative, the result would have 8 dimensions, which
cannot be stored in the memory of the computer (unless the cube size would be small). Instead, $di�mul ( f (x) ,x ,u) calculates
the inner product of the derivative of f (x) w.r.t. x and a vector (or cube) u. By taking the inner product, the result of the
operator is always a function that returns a 4D cube. When applying the chain rule, this appears to be su�cient.

Additionally, the adjoint of convolve_di�_f (x, f , y) with respect to y is required for AD. Again, the compiler can derive ad-
joints of functions automatically, except when the function based on “black box” building blocks (such as the cudnn_convolution_forward
in the above example). Therefore, the adjoint needs to be speci�ed which is in this case simply an identity operation (because
convolve_di�_x does not depend on y).

Batch normalization

Batch normalization can fairly easily be implemented using the Quasar repmat and mean functions.

function [y : Data] = batch_normalization(x : Data)
{!ad_support convert_matrix_ops_to_loops=true}
mu = repmat(mean(x, 0), [size(x,0),1,1,1])
sigma = repmat(sqrt(mean((x - mu).^2, 0)), [size(x,0),1,1,1])
y = (x - mu) ./ sigma

endfunction

Because these functions have arrays as input and arrays as output, we call them “higher level” functions. By default, using
{! ad_support} with no additional parameters, higher level functions are di�erentiated using reductions. Practically, this
means that the derivatives and adjoint of repmat and mean need to be speci�ed. As an easier alternative, it is also possible to
specify that Quasar converts the operations to loops involving only scalar values. This is achieved using the code attribute
{! ad_support}, which allows to specify some algorithmic di�erentiation options (here, convert_matrix_ops_to_loops=true).

This setting also activates a nested loop optimization pipeline within the compiler.

Miscellaneous layers

Similarly, it is possible to incorporate various other layers. For example, a 2D dual-tree complex wavelet layer can be de�ned
as follows:

my_idtcwt : [(mat[Data], mat, mat, int) -> mat] = (w, w1, w2, J) -> pidtcwt(w, w1, w2, J)
my_dtcwt : [(mat, mat, mat, int) -> mat[Data]] = (w, w1, w2, J) -> pdtcwt(w, w1, w2, J)

Here, the types are speci�ed statically, although it is optional. To be able to use the functions my_dtcwt and my_idtcwt as
layers in a neural network, it is necessary to de�ne the $adjoint () and $di�mul () (in theory, the AD framework can do it by
itself, but in this case the functions are linear and because the 2D dual-tree complex wavelets form a tight frame, the adjoint
is simply the inverse. Therefore, we can help the AD framework by de�ning the adjoints and derivatives explicitly:
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reduction (w, w1, w2, J) -> $adjoint(my_dtcwt(w, w1, w2, J), w) = my_idtcwt(w, w1, w2, J)
reduction (w, w1, w2, J) -> $adjoint(my_idtcwt(w, w1, w2, J), w) = my_dtcwt(w, w1, w2, J)

reduction (w, w1, w2, J, dw) -> $diffmul(my_dtcwt(w, w1, w2, J), w, dw) = my_dtcwt(dw, w1, w2, J)
reduction (w, w1, w2, J, dw) -> $diffmul(my_idtcwt(w, w1, w2, J), w, dw) = my_idtcwt(dw, w1, w2, J)

With only a few lines of code, new layers can be de�ned and integrated in the neural network. Again, the AD framework
will automatically “glue” the di�erent layers together by the use of the derivative chain rule.

Network parameter Initialization

For the initialization of the neural network parameters, we write a function that returns a NetworkParameters instance.

function w : NetworkParameters = init_network()
bias = rand(3)
w1 = get_gabor_convolve_layer(radius:=5, channels_in:=1, channels_out_factor:=13)
w2 = rand(4, 13, 1, 1) % radius = 1
w3 = rand(1, 4, 5, 5) % radius = 2

% Group the weights and return a NetworkParameters value
w = {w1, w2, w3, bias}

endfunction

Here, we initialize the weights of the �rst convolutional layer using a set of Gabor �lter bank (the implementation of this
function is omitted here). The other weights are initialized as uniformly distributed random values between 0 and 1. The
dimensions of the parameters need to match either the input data cube (for example, the number of color channels) or are
(hyper)parameters themselves (for example, the support size of the �lter coe�cients).

Forward network implementation and loss function

Once the individual components of the neural network have been de�ned, the forward network implementation is as easy
as chaining these components together.

function y = forward_network(x : Data, w : NetworkParameters)
x1 = convolve(x, w[0])
x2 = convolve(x1, w[1])
x3 = pointwise_RELU(x2)
y = convolve(x3, w[2])

endfunction

When desired, the temporary variables x1, x2 and x3 can be avoided:

y = convolve(pointwise_RELU(convolve(convolve(x, w[0]), w[1])), w[2])

although here the code readability slightly diminishes.

Similarly, we can de�ne the MSE loss function:
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function C = mse_lossfunction(u : Data, y : Data)
C = 0.0
for [m,n,p,q]=0..size(u,0..3)-1

C += (u[m,n,p,q] - y[m,n,p,q])^2
endfor

endfunction

Then the loss function of the neural network is obtained by chaining the forward network and the MSE loss function.

function C = loss_function(u : Data, y : Data, f : NetworkParameters)
x = forward_network(y, f)
C = mse_lossfunction(u, x)

endfunction

The gradient of the loss function can be obtained simply as follows:

gradient = (x, y, f) -> $diff(lossfunction(x, y, f), f)

This operation will do all of the heavy work and generate the backpropagation for the neural network.

Adam optimizer

The next step is writing an optimizer that uses the gradient from the previous section. For this purpose, we will use Adam
optimizer, which is an extension of the stochastic gradient descent algorithm. Adam combines the advantages of two ex-
tensions of stochastic gradient descent: 1) the adaptive gradient algorithm (AdaGrad) that maintains a learning rate for
each parameter and 2) Root Mean Square Propagation (RMSProp) that adapts per-parameter learning rates to the average of
recent magnitudes of the gradients of the weights. Additionally, momentum is incorporated in the training algorithm using
the �rst and second order moments of the parameters.

function [] = train_adam( _
gradient : [(Data, Data, NetworkParameters) -> NetworkParameters], _
inputs : vec[Data], _
groundtruths : vec[Data], _
params : NetworkParameters, _
nr_iterations = 100, _
rate = 1e-3, _
momentum_first_order = 0.9, _
momentum_second_order = 0.999)

nr_images = numel(inputs)
assert(numel(groundtruths) == nr_images)

% initialization
first_order_moments = 0*params
second_order_moments = 0*params

for iteration = 0..nr_iterations-1
img_idx = mod(iteration,nr_images)
input = inputs[img_idx]
groundtruth = groundtruths[img_idx]
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% for each layer, backward propagation, updating the momentum and taking the step
unbiased_rate = rate * sqrt(1-momentum_second_order.^(iteration+1)) / (1-momentum_first_order

.^(iteration+1)) %see Adam paper
optimization_epsilon = 1e-8

% calculate the gradient
grad = gradient(input, groundtruth, params)

% updates the moments and the parameters (uses cell arithmetic)
first_order_moments = first_order_moments * momentum_first_order + grad .* (1 -

momentum_first_order)
second_order_moments = second_order_moments * momentum_second_order + grad.^2 .* (1 -

momentum_second_order)
params = params - unbiased_rate * first_order_moments ./ (sqrt(second_order_moments) +

optimization_epsilon)
endfor

endfunction

Multi-GPU processing

type NetworkParameters : dynamic class
w1a : Parameters
w2a : Parameters
w3 : Parameters
w1b : Parameters
w2b : Parameters
bias : vec

endtype

function [y : Data] = merge_layers(x1 : Data, x2 : Data)
y = zeros(size(x1))
for [p,c,m,n]=0..size(y, 0..3)-1

bestval = max(x1[p,c,m,n],x2[p,c,m,n])
y[p,c,m,n]=bestval

endfor
endfunction

function y = forward_network(x : Data, w : NetworkParameters)

{!sched gpu_index=0}
part1 = pointwise_RELU(convolve(convolve_biased(x, w.w1a, w.bias), w.w2a))
{!sched gpu_index=1}
part2 = pointwise_RELU(convolve(convolve_biased(x, w.w1b, w.bias), w.w2b))
{!sched mode=auto}
y = convolve(merge_layers(part1, part2), w.w3)

endfunction
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Discussion and Conclusion

The implementation of neural networks in Quasar is quite straightforward thanks to the integrated support for algorithmic
di�erentiation. The above tutorial is self-containing, it only relies on this special $di� metafunction to calculate the gradient.

The strong point of this approach is that it is fairly easy to extend layers or de�ne new layers. Also, the neural network
de�nition does not necessary need to follow the traditional graph structure as the AD allows a general modular structure
(i.e. multiple levels of functions calling each other). The network layers can have branches and other control structures,
which allows for example data-adaptive network designs. It is interesting to explore the new possibilities that these new
designs can bring for various applications.

Reductions play a central role in the AD system: once a derivative has been calculated, it is stored as a reduction for later
use. Before calculation of the derivative, the AD tool looks if a derivative has already been speci�ed, which allows the user
to override derivative implementations (for example, to be able to access CuDNN functions).

AD is also naturally integrated with the Quasar data types. In the CNN example, the parameters were passed as a cell vector.
On this cell vector, arithmetic is then applied (for example, to calculate the �rst and second order moments). Powerful high-
level expressions then manipulate an entire irregular data structure.

Instead of cell vectors, alternatively, it is also possible to use structured data such as dynamic classes:

type NetworkParameters : dynamic class
w1 : Parameters
w2 : Parameters
w3 : Parameters
bias : vec

endtype

This has the advantage that the network parameters can be named explicitly, rather than relying on �xed indices (w[0], w[1]
etc.). It is even possible to mix classes and cell vectors in this de�nition. This allows de�ning an algorithm with several
(layers of) parameters and consequently the derivative of the cost function with respect to all of the parameters can be
calculated at once.

Appendix: the complete code (single GPU network)

import "Quasar.CompMath.dll"
import "Quasar.DNN.dll"
import "Quasar.UI.dll"

type Data : cube{4} % in NCHW format
type Parameters : cube{4} % in PCHW format

function y = __device__ RELU(x : scalar)
if x<0

y=0
else

y=x
endif

endfunction
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function y = pointwise_RELU(x : Data)
y = zeros(size(x))
for [m,m,p,q]=0..size(x,0..3)-1

y[m,n,p,q] = RELU(x[m,n,p,q])
endfor

endfunction

function [y : Data] = convolve(x : Data, f : Parameters)
[K,L] = int(size(f,2..3)/2) % half filter support size
conv_desc = new(qdnn_conv_descriptor)
conv_desc.pad_w = L
conv_desc.pad_h = K
input_c = x
output_c = uninit(size(x,0),size(f,0),size(x,2),size(x,3))
cudnn_convolution_forward(1.0, input_c, 0.0, output_c, f, conv_desc)
y = output_c

endfunction

function [df : Parameters] = convolve_diff_f(x : Data, f : Parameters, y : Data)
[K,L] = int(size(f,2..3)/2)
conv_desc = new(qdnn_conv_descriptor)
conv_desc.pad_w = L
conv_desc.pad_h = K
input_c = x
dzdoutput_c = y
dzdw = uninit(size(f))
cudnn_convolution_backward_filter(1.0,input_c,dzdoutput_c,0.0,dzdw,conv_desc)
df = dzdw

endfunction

function [dx : Data] = convolve_diff_x(x : Data, f : Parameters, y : Data)
[K,L] = int(size(f,2..3)/2)
conv_desc = new(qdnn_conv_descriptor)
conv_desc.pad_w = L
conv_desc.pad_h = K
input_c = copy(x)
dzdoutput_c = copy(y)
dzdinput = uninit(size(input_c))
cudnn_convolution_backward_data(1.0,f,dzdoutput_c,0.0,dzdinput,conv_desc)
dx = dzdinput

endfunction

reduction (x, f, y) -> $diffmul(convolve(x, f), f, y) = convolve_diff_f(x, f, y)
reduction (x, f, y) -> $diffmul(convolve(x, f), x, y) = convolve_diff_x(x, f, y)
reduction (x, f, y) -> $adjoint(convolve_diff_f(x, f, y), y) = convolve_diff_f(x, f, y)
reduction (x, f, y) -> $adjoint(convolve_diff_x(x, f, y), y) = convolve_diff_x(x, f, y)

function [w : cube{4}] = get_gabor_convolve_layer(radius:int=5,channels_in:int=1,channels_out_factor:
int=5)
if channels_out_factor != 5 && channels_out_factor != 13

error("Only gabor filter bank with 5 or 13 output factor is currently available")
endif
%now initialize those filters!
channels_out = channels_out_factor*channels_in
w = zeros(channels_out, channels_in,2*radius+1,2*radius+1)
for i = 0..channels_in-1

%bandwidth 0
w[i*channels_out_factor+0 ,i,:,:] = gabor_kernel(radius,0,0)
%bandwidth 1
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w[i*channels_out_factor+1 ,i,:,:] = gabor_kernel(radius, 0,1)
w[i*channels_out_factor+2 ,i,:,:] = gabor_kernel(radius, pi/4,1)
w[i*channels_out_factor+3 ,i,:,:] = gabor_kernel(radius, pi/2,1)
w[i*channels_out_factor+4 ,i,:,:] = gabor_kernel(radius,3*pi/4,1)

if channels_out > 5
%bandwidth 2
w[i*channels_out_factor+5 ,i,:,:] = gabor_kernel(radius, 0,2)
w[i*channels_out_factor+6 ,i,:,:] = gabor_kernel(radius, pi/8,2)
w[i*channels_out_factor+7 ,i,:,:] = gabor_kernel(radius, pi/4,2)
w[i*channels_out_factor+8 ,i,:,:] = gabor_kernel(radius,3*pi/8,2)
w[i*channels_out_factor+9 ,i,:,:] = gabor_kernel(radius, pi/2,2)
w[i*channels_out_factor+10,i,:,:] = gabor_kernel(radius,5*pi/8,2)
w[i*channels_out_factor+11,i,:,:] = gabor_kernel(radius,3*pi/4,2)
w[i*channels_out_factor+12,i,:,:] = gabor_kernel(radius,7*pi/8,2)
endif

endfor
endfunction

function w : NetworkParameters = init_network()
bias = rand(3)
w1 = get_gabor_convolve_layer(radius:=5, channels_in:=1, channels_out_factor:=13)
w2 = rand(4, 13, 1, 1) % radius = 1
w3 = rand(1, 4, 5, 5) % radius = 2

% Group the weights and return a NetworkParameters value
w = {w1, w2, w3, bias}

endfunction

function C = mse_lossfunction(u : Data, y : Data)
C = 0.0
for [m,n,p,q]=0..size(u,0..3)-1

C += (u[m,n,p,q] - y[m,n,p,q])^2
endfor

endfunction

function C = loss_function(u : Data, y : Data, f : NetworkParameters)
x = forward_network(y, f)
C = mse_lossfunction(u, x)

endfunction

function [] = train_adam( _
gradient : [(Data, Data, NetworkParameters) -> NetworkParameters], _
inputs : vec[Data], _
groundtruths : vec[Data], _
params : NetworkParameters, _
nr_iterations = 100, _
rate = 1e-3, _
momentum_first_order = 0.9, _
momentum_second_order = 0.999)

nr_images = numel(inputs)
assert(numel(groundtruths) == nr_images)

% initialization
first_order_moments = 0*params
second_order_moments = 0*params

for iteration = 0..nr_iterations-1
img_idx = mod(iteration,nr_images)
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input = inputs[img_idx]
groundtruth = groundtruths[img_idx]

% for each layer, backward propagation, updating the momentum and taking the step
unbiased_rate = rate * sqrt(1-momentum_second_order.^(iteration+1)) / (1-momentum_first_order

.^(iteration+1)) %see Adam paper
optimization_epsilon = 1e-8

% calculate the gradient
grad = gradient(input, groundtruth, params)

% updates the moments and the parameters (uses cell arithmetic)
first_order_moments = first_order_moments * momentum_first_order + grad .* (1 -

momentum_first_order)
second_order_moments = second_order_moments * momentum_second_order + grad.^2 .* (1 -

momentum_second_order)
params = params - unbiased_rate * first_order_moments ./ (sqrt(second_order_moments) +

optimization_epsilon)
endfor

endfunction

function [] = main()
% simplified data loading
im_gt = imread("data/testimage_gt.png")[:,:,0]/255.0
im_mask = imread("data/testimage_mask.png")[:,:,0]/255.0
im_input = imread("data/testimage_input.png")[:,:,0]/255.0

params = init_network()

gradient = (x, y, f) -> $diff(lossfunction(x, y, f), f)

train_adam(cost_fn := lossfunction,
forward_network := forward_network,
gradient := gradient,
inputs := {shuffledims(im_input, [3,2,0,1])},
groundtruths := {shuffledims(im_gt, [3,2,0,1])},
params := params,
nr_iterations := 1000,
rate := 1e-3,
visualization := true)

save("trained_network.qd", params)
endfunction
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Convex optimization framework

In this section we demonstrate how the algorithmic di�erentiation (AD) framework can be used to design a large-scale
convex optimization framework, named GASPACHO. AD provides a means to perform matrix-free computation: all compu-
tations are speci�ed by means of a computer program, but there is no matrix representation involved storing the coe�cients.
In combination with iterative solvers AD allows solving large systems of equations with many variables.

To extend the possibilities of the AD framework, di�erentiation is combined with custom solvers that are de�ned by means
of reductions. This permits de�ning a generic “argmin” function to solve convex optimization problems. A reduction can
then be used to de�ne how to solve a certain subproblem of the convex optimization problem. Depending on the structure
of the objective function, the cost function can be broken up in di�erent “sub” functions that can be solved individually
by simple methods (using a technique called “variable splitting”). The advantage of the technique outlined here is that the
variable splitting can be done automatically and transparently for the user.

In the following, we will focus on convex optimization problems of the form:

x̂ = arg min
x
||y −W(x)||22 +

I∑
i=1

λi|Si(x)|1

These optimization problems frequently occur in image processing (e.g., in image reconstruction and restoration). The �rst
term is a data �tting function, the second term contains I regularization terms. The functions W(x) and Si(x), i = 1, ...I

are speci�ed by means of an algorithm. The goal is then to algorithmically derive a solution method for the above problem.

First, a trivial solution would consist of the gradient descent method or non-linear conjugate gradient method. The reduce
the computation time of these iterative methods, the approach outlined here will exploit the structure of the optimization
problem in order to arrive at a more direct solution. The approach is one step in the direction of a generic arg min solver
that exploits the structure of the underlying problem. For example,

arg min
x
||y −W(x)||2 → conjugate gradient solver

arg min
x
||y − x||2 + λ||x||2 → pointwise solver

arg min
x
||y − x||2 + λ|x|1 → soft thresholding solver

To take advantage of the structure in the objective function, pattern matching and term rewriting is employed. In Quasar,
this is easily achieved by de�ning reductions. One reduction matches one speci�c arg min expression and expands it into
the corresponding solver. During pattern matching, “sub”-functions are identi�ed (for example ||x||2) which are in a next
step passed to the selected solver. The solver can then be specialized for the functions being used, yielding a solution method
that is optimized toward the speci�c input optimization problem.

Results of this research have been presented at Wavelets and Sparsity XVII, SPIE Optics & Photonics 2017 in San Diego,
USA:

B. Goossens, H. Luong and W. Philips, “GASPACHO: a Generic Automatic Solver using Proximal Algorithms for Convex Huge
Optimization problems,” Wavelets and Sparsity XVII, SPIE Optics & Photonics 2017, Aug. 6-10, 2017, San Diego, CA, USA.
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Variadic lambda-capturing reductions

To be able to match expressions with arbitrary number of terms, variadic lambda capturing reductions have been added to
Quasar. A lambda capturing reduction allows a function to be captured from the context. For example:

reduction (x, f : [??->??], g : [??->??]) -> f(x)^3+g(x)^3 = result(f,g,x)

will match cos(x)^3+sin(x)^3 with f=cos and g=sin. By lambda capturing, the reduction pattern matching can be applied
under more general circumstances. The captured functions are then passed to the solution method ( result () ).

Often, the number of terms is not known in advance (or, it is desirable to implement a convex solver that is general enough
to handle a variable number of terms). Variadic lambda-capturing reductions generalize lambda capturing to an arbitrary
number of terms and/or functions. For this purpose, it is necessary to be able to express notation such as

f1(x) + f2(x) + ...+ fN (x)

in Quasar. The classical mathematical formulation is not the best suited for a compiler, because of possible ambiguities.
Therefore, an alternative notation has been de�ned. Declaring f as a vector of functions with one input parameter and one
output parameter:

f : vec[[??->??]]

The expression f1(x) + f2(x) + ...+ fN (x) can be written in Quasar as:

sum([f(x)])

which is essentially a vector-based translation of
∑N

n=1 fn(x). Because f is a cell array, the evaluation of sum([f(x) ]) is
unknown to the Quasar compiler. Therefore it is necessary to implement sum([f(x) ]) , using a function and a reduction:

function y = vecfunc_sum(f : vec[[??->??]], x, n)
y = 0.0
for k=0..numel(f)-1

y += f[k](x)^n
endfor

endfunction

reduction {priority=high}, (x,...f) -> sum([f(x)]) = vecfunc_sum(f, x, 1)

Here, { priority =high} indicates that the reduction has a high priority: in case of reduction con�icts, this reduction has
precedence. Using the above expression, the reduction pattern matching is signi�cantly simpli�ed, without losing generality.
For example, the expression

f21 (x) + f22 (x) + ...+ f2N (x)

can be written as follows:
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sum([f(x).^2])

and the implementation is entirely analogous:

reduction {priority=high}, (x,f : vec[[?? -> ??]]) -> sum([f(x).^2]) = vecfunc_sum(f, x, 2)

Using the above techniques, expressions involving a variadic number of terms can be matched:

argmin(sum(S1(x).^2)+sum(S2(x).^2)+sum(S3(x).^2), x)

A simple reduction then allows the problem solver to handle a variable number of terms.

reduction (x,...S:vec[[??->??]]) -> argmin(sum([sum(S(x).^2)]),x) = solver(S)

Often, terms of the cost function have di�erent weights. By de�ning a variadic weight parameter vector, weights can be
added:

argmin(0.5*sum(S1(x).^2)+0.2*sum(S2(x).^2)+0.1*sum(S3(x).^2), x)
reduction (x,...lambda,...S:vec[[??->??]]) -> argmin(sum(lambda.*[sum(S(x).^2)]),x) = solver(S,lambda)

Notice that lambda.∗[sum(S(x) .^2) ] is an elementwise product of two vectors. The reduction pattern matching is able to
extract the coe�cients corresponding to each term and collect them in the vector lambda.

Solving L2 problems using conjugate gradient

To solve L2 problems such as arg minx ||y−W(x)||2 and arg minx ||y−x||2 + λ||Wx||2, the iterative conjugate gradient
can be used, requiring no explicit matrix-forms for W (or any other involved matrix).

function x = conjugate_gradients(y, FHF, num_iterations=10)
x = 0
r = y
p = r
new_err = dotprod(r, r)
tol = 1e-15

for it=1..num_iterations
err=new_err
A_p = FHF(p)
alpha = err / dotprod(p, A_p)
x = x + alpha * p
r = r - alpha * A_p
new_err = dotprod(r, r)
if (new_err/numel(x) < tol)

break
endif
beta = new_err / err
p = r + beta * p

endfor
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endfunction

The above implementation relies on the function FHF which implements the concatenation FHF. In the convex solver, only
the function F is speci�ed. To obtain FH , algorithmic adjoint calculation (AAC) is used. Once F and FH are known, their
product readily follows by function composition. Below, conjugate gradient wrapper implementations are given for di�erent
forms of the L2 optimization problem.

function x = conjugate_gradient_auto_adjoint(y : cube, F : [?? -> ??], num_iterations = 10)
{!auto_specialize}
FH = z -> $adjoint(F(z), z)
x = conjugate_gradients(FH(y), (x -> FH(F(x))), num_iterations)

endfunction

function x = conjugate_gradient_regularization_auto_adjoint(y : cube, W : [cube -> ??], A : [cube ->
??], lambda, num_iterations = 10)
{!auto_specialize}
WH = y -> $adjoint(W(y), y)
AH = y -> $adjoint(A(y), y)
x = conjugate_gradients(WH(y) + lambda * AH(y), (x -> WH(W(x)) + lambda * AH(A(x))),

num_iterations)
endfunction

function x = conjugate_gradient_multireg_auto_adjoint(y : cube, W : [cube -> ??], A : vec[[cube ->
??]], lambda, num_iterations = 10)
{!auto_specialize}
WH = y -> $adjoint(W(y), y)
AH = vec[function](numel(A))
AHA = vec[function](numel(A))
for i=0..numel(A)-1

{!unroll times=numel(A)}
AH[i] = y -> $adjoint(A[i](y), y)
AHA[i] = x -> AH[i](A[i](x))

endfor
x = conjugate_gradients(WH(y) + lambda * sum([AHA(y)]), _

(x -> WH(W(x)) + lambda * sum([AHA(x)]), num_iterations)
endfunction

reduction (x, y, W) -> argmin(sum((y - W(x)).^2), x) = conjugate_gradient_auto_adjoint(y,W)
reduction (x, y, W, A, lambda) -> argmin(sum((y - W(x)).^2) + lambda .* sum(A(x).^2), x) =

conjugate_gradient_regularization_auto_adjoint(y,W,A,lambda)
reduction (x, y, W, ...A : vec[[??->??]], lambda) -> _

argmin(sum((y - W(x)).^2) + lambda.*sum([sum(A(x).^2)]),x) =
conjugate_gradient_multireg_auto_adjoint(y,W,A,lambda)

The code attribute {! auto_specialize } speci�es that the function needs to be specialized for every function F that is passed
to it. This is required for AAC, so that the function is known at compile time. {! unroll times=numel(N)} entirely expands the
loop based on the loop iteration count that is known at compile-time. By expanding the loop, we can guarantee that the
adjoint is calculated for every function A[i].
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Proximal Operator Framework

To deal with optimization problems involving convex cost functions that are not L2, the proximal operator framework can
be used. Many convex optimization problems are not di�erentiable, therefore, in essence gradient methods (and hence
algorithmic di�erentiation) can not directly be used. Splitting methods proceed by splitting the objective functions into
several sub-problems for which an e�cient optimization method exists and that are therefore easier to solve. In GASPACHO,
the splitting can be elegantly mapped onto a modular approach involving reductions. For example, splitting may result in an
L2-problem and an L1-problem. The L2 problem can then be solved using the conjugate gradient method from the previous
section. For the L1 problem, separate solvers need to be de�ned.

The proximal operator is the solution to the miminization problem:

arg min
x
f(x) +

1

2
||y − x||2

where f(x) is a convex function. For several functions, a simple and e�cient proximal operator exists. Some de�nitions are
given below.

rectify = x -> x .* (x >= 0) + maxvalue(scalar) * (x < 0)

pointwise_l2_inverse = (y,lambda) -> 1.0/(lambda + 1) * y
pointwise_l1_inverse = (y,lambda) -> sign(y).*max(0.0, abs(y) - lambda)
pointwise_proxmax_inverse = (y,lambda) -> y.*(abs(y)<lambda) + _

sign(y).*lambda.*(abs(y)>=lambda).*(abs(y)<2*lambda) + _
sign(y).*(abs(y)-lambda).*(abs(y)>=2*lambda)

pointwise_proxmax_inverse = (y,lambda) -> max(0, y - lambda)

reduction (x, y, W) -> argmin(sum((y - W(x)).^2), x) = conjugate_gradient_bridge(y,W)
reduction (x, y, W, A, lambda) -> argmin(sum((y - W(x)).^2) + lambda .* sum(A(x).^2), x) =

conjugate_gradient_reg_bridge(y,W,A,lambda)
reduction (x, y, W, ...A : vec[[??->??]], lambda) -> _

argmin(sum((y - W(x)).^2) + lambda.*sum([sum(A(x).^2)]),x) =
conjugate_gradient_reg2_bridge(y,W,A,lambda)

reduction (x, y, lambda) -> argmin(sum((y - x).^2) + lambda .* sum(x.^2), x) = pointwise_l2_inverse(y,
lambda)

reduction (x, y, lambda) -> argmin(sum((y - x).^2) + lambda .* sum(abs(x)), x) = pointwise_l1_inverse(
y,lambda)

reduction (x, y, lambda) -> argmin(sum((y - x).^2) + lambda .* max(abs(x)-lambda,0),x) =
pointwise_proxmax_inverse(y, lambda)

reduction (x, y, lambda) -> argmin(sum((y - x).^2) + lambda .* rectify(x),x) =
pointwise_proxrectify_inverse(y, lambda)

Splitting method

Several splitting methods to decompose the convex optimization problem into L1 and L2 subproblems exist. An implemen-
tation of two of these algorithms is given below.

Split-Bregman algorithm

The Split-Bregman method (also sometimes known as split-augmented Lagrangian method, or alternating direction method
of multipliers, ADMM) performs alternating update steps, solving both L1 and L2 problems. The implementation relies on
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the argmin() function, for which the necessary de�nitions are given in the previous sections.

function x = split_bregman_solver(x0, y0,
W : [?? -> ??], Phi : [?? -> ??], psnr : [?? -> scalar], max_iter = 10, lambda = 1e-6)

x = x0
d = Phi(zeros(size(x)))
b = Phi(zeros(size(x)))
mu = 0.01 % penalizer param

for iter=1..max_iter
print "iter ",iter, " psnr=", psnr(x), " dB"

% Solve the L2-problem
x = argmin(sum((y0 - W(x)).^2) + mu .* sum(Phi(x).^2), x)

% Solve the L1-problem
d = argmin(sum((b - Phi(x)).^2) + lambda/mu .* sum(abs(b)), x)
b += (Phi(x) - d)

endfor
endfunction

Simultaneous-direction method of multipliers (SDMM)

The SDMM method generalizes the split-Bregman/ADMM method to a variable number of L1 terms. Some of the subprob-
lems can be solved in parallel, e.g., via multi-GPU processing ( {! sched gpu_index=X} code attributes).

function x = SDMM_solver_multi(x0, y0,
C : [?? -> ??], W : [?? -> ??], Phi : vec[[?? -> ??]], psnr : [?? -> scalar], lambda : vec,

max_iter = 50)
{!auto_specialize}

x = x0
W_H = X -> $adjoint(W(X),X)
C_H = X -> $adjoint(C(X),X)

% Initialize temporary variables
K = numel(Phi)
y1 = copy(y0)
y2 = cell(K)
z1 = zeros(size(y0))
z2 = cell(K)
Phi_H = vec[function](K)
Phi_H_Phi = vec[function](K)
{!interpreted for}
for k1=0..numel(Phi)-1

{!unroll times=numel(Phi)}
y2[k1] = Phi[k1](x0)
z2[k1] = Phi[k1](zeros(size(x0)))
Phi_H[k1] = X -> $adjoint(Phi[k1](X),X)

endfor
for k=0..K-1

Phi_H_Phi[k] = x -> Phi_H[k](Phi[k](x))
endfor
gamma = 10.0
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for iter=1..max_iter
print "iter ",iter, " psnr=", psnr(x), " dB"

{!sched gpu_index=0}
u = W_H(C_H(C(y1 - z1)))
{!sched gpu_index=1}
for k=0..K-1

u += Phi_H[k](y2[k] - z2[k])
endfor
{!sched gpu_index=0}
x = conjugate_gradients(u, (r -> W_H(C_H(C(W(r)))) + vecfunc_sum(Phi_H_Phi, r)))

% Proximal operator 1
s1 = W(x)
y1 = (gamma * y0 + s1 + z1) / (gamma + 1)
z1 += (s1 - y1)

% Proximal operators 2, 3, ...
{!sched gpu_index=1}
for k=0..K-1

s2 = Phi[k](x)
y2[k] = argmin(sum(((s2 + z2[k]) - x).^2) + (gamma*lambda[k]).*sum(abs(x)), x)
z2[k] += (s2 - y2[k])

endfor
endfor

endfunction

reduction (x, y, W, ...lambda, ...S) -> argmin(sum((y - W(x)).^2) + sum([lambda.*sum(abs(S(x)))]), x)
= _
SDMM_solver_multi(x0, y, (x -> x), W, S, plot_result, lambda, max_iter:=10)

reduction (x, y, C, W, ...lambda, ...S) -> argmin(sum(C(y - W(x)).^2) + sum([lambda.*sum(abs(S(x)))]),
x) = _

SDMM_solver_multi(x0, y, C, W, S, plot_result, lambda, max_iter:=50)

The last two reductions match expressions for convex optimization problems that the SDMM algorithm can solve. The
SDMM solver then relies on its turn on the argmin function. This approach exploits the structure of the optimization problem
and generates a specialized implementation solely based on the objective function.

Below this is illustrated using an image restoration (joint denoising and deblurring) example:

[S : [cube -> vec[??]], S_H : [vec[??]->cube]] = build_dst2d(size(y,0..2), 8, 4)
[S2 : [cube -> vec[??]], S2_H : [vec[??]->cube]] = build_tvtransform()

reduction x -> $adjoint(S(x),x) = S_H(x)
reduction x -> $adjoint(S2(x),x) = S2_H(x)

x : cube
x = argmin(sum(C(y - W(x)).^2) + (100.0.*sum(abs(S(x))) + 1000.0.*sum(abs(S2(x)))), x)
<!--*-->

S and S_H denote respectively the forward and adjoint shearlet transform. These functions are speci�ed by a direct algorithm.
Similarly, S2 and S2_H denote the forward and adjoint total variation transform (sometimes called gradient transform).
Therefore, it is necessary to inform the AD framework that the adjoints of S and S2 are respectively S_H and S2_H, resulting
in the two reduction de�nitions.
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The image restoration problem is then simply solved in one line of code, using an argmin expression.

Note that type of x here needs to be predeclared due to self-reference (see x : cube).

Variadic parameter expansion

Often it is useful to pass parameters to the algorithms. This can be achieved by extending the argmin function to take an extra
parameter variable, containing an object with the corresponding parameter values. Variadic parameter expansion allows
the object to be expanded into a set of function parameters, as indicated below:

options={num_iterations:=10,alpha:=1e-3}
my_func(...options)

By applying this technique, parameters can be set speci�c to the problem that is being solved. The parameters are then
propagated to the individual argmin implementations.

Limitations

The convex optimization framework currently has a few limitations:

• Currently there is no direct syntax support for boundary conditions (e.g. positivity, negativity conditions). Instead,
boundary conditions could be passed as parameters to the optimization algorithms. This is part of ongoing work.

• The reduction pattern matching currently only supports a limited number of algebraic manipulations. For example,
for sums involving a variable number of terms, the matching supports term reordering. Scaling of the cost function is
not handled by the matching: for example the solution to argmin(2∗x^2, x) is identical to the solution of argmin(x^2, x),
although the matching is not automatic. This can be solved by de�ning an explicit reduction for this scaling parameter.

• For multiplications A∗B, the reduction system cannot assume commutivity, unless the involved variables are all de-
clared as scalar values (A: scalar , B: scalar ). When the parameters of the variables in the reduction are not set, the
reduction (A,B)−>A∗cos(B) will not match (A,B)−>cos(B)∗A even though for a speci�c instantiation (for example A:mat,
B: scalar ), the result is the same. The solution is to indicate variable types so that the reductions can be applied in wide
enough circumstances. In some cases, it is therefore necessary to de�ne the reduction multiple times to accomodate
this scenario.
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